A multiplex reverse transcriptase-polymerase chain reaction(multiplex RT-PCR) assay was developed and subsequently evaluated for its efficacy in the detection of multiple viral infections simultaneously,in swine.Speci...A multiplex reverse transcriptase-polymerase chain reaction(multiplex RT-PCR) assay was developed and subsequently evaluated for its efficacy in the detection of multiple viral infections simultaneously,in swine.Specific primers for each of the 3 RNA viruses,North American genotype porcine reproductive and respiratory syndrome virus,Japanese encephalitis virus,and swine influenza virus,were used in the testing procedure.The assay was shown to be highly sensitive because it could detect as little as 10-5 ng of each of the respective amplicons in a single sample containing a composite of all 3 viruses.The assay was also effective in detecting one or more of the same viruses in various combinations in specimens,including lymph nodes,lungs,spleens,and tonsils,collected from clinically ill pigs and in spleen specimens collected from aborted pig fetuses.The results from the multiplex RT-PCR were confirmed by virus isolation.The relative efficiency(compared to the efficiency of separate assays for each virus) and apparent sensitivity of the multiplex RT-PCR method show that this method has potential for application in routine molecular diagnostic procedures.展开更多
Arboviruses represent a serious problem to public health and agriculture worldwide. Fast, accurate identification of the viral agents of arbovirus-associated disease is essential for epidemiological surveillance and l...Arboviruses represent a serious problem to public health and agriculture worldwide. Fast, accurate identification of the viral agents of arbovirus-associated disease is essential for epidemiological surveillance and laboratory investigation. We developed a cost-effective, rapid, and highly sensitive one-step "triplex RT-PCR enzyme hybridization" assay for simultaneous detections of Japanese Encephallitis virus (JEV, Flaviviridae), Getah virus (GETV, Togaviridae), and Tahyna virus (TAHV, Bunyaviridae) using three pairs of primers to amplify three target sequences in one RT-PCR reaction. The analytical sensitivity of this assay was 1 PFU/mL for JEV, 10 PFU/mL for GETV, and 10 PFU/mL for TAHV. This assay is significantly more rapid and less expensive than the traditional serological detection and single RT-PCR reaction methods. When "triplex RT-PCR enzyme hybridization" was applied to 29 cerebrospinal fluid (CSF) samples that were JEV-positive by normal RT-PCR assay, all samples were strongly positive for JEV, but negative for GETV and TAHV, demonstrating a good sensitivity, specificity, and performance at CSF specimen detection.展开更多
Objective:To develop diagnostic test for detection chikungunya virus(CHIKV and Dengue virus (DENV) infection.Methods:We have performed a rapid,accurate laboratory confirmative method to simultaneously detect,quantify ...Objective:To develop diagnostic test for detection chikungunya virus(CHIKV and Dengue virus (DENV) infection.Methods:We have performed a rapid,accurate laboratory confirmative method to simultaneously detect,quantify and differentiate CHIKV and DENV infection by single-step multiplex real-time RT-PCR.Results:The assay’s sensitivity was 97.65%,specificity was 92.59% and accuracy was 95.82%when compared to conventional RT-PCR.Additionally,there was no cross-reaction between CHIKV,DENV,Japanese encephalitis virus,hepatitis C,hepatitis A or hepatitis E virus.Conclusions:This rapid and reliable assay provides a means for simultaneous early diagnosis of CHIKV and DENV in a single-step reaction.展开更多
Tomato brown rugose fruit virus(ToBRFV) is a novel tobamovirus firstly reported in 2015 and poses a severe threat to the tomato industry. So far, it has spread to 10 countries in America, Asia, and Europe. In 2019, To...Tomato brown rugose fruit virus(ToBRFV) is a novel tobamovirus firstly reported in 2015 and poses a severe threat to the tomato industry. So far, it has spread to 10 countries in America, Asia, and Europe. In 2019, ToBRFV was identified in Shandong Province(ToBRFV-SD), China. In this study, it was shown that ToBRFV-SD induced mild to severe mosaic and blistering on leaves, necrosis on sepals and pedicles, and deformation, yellow spots, and brown rugose necrotic lesions on fruits. ToBRFV-SD induced distinct symptoms on plants of tomato, Capsicum annumm, and Nicotiana benthamiana, and caused latent infection on plants of Solanum tuberosum, Solanum melongena, and N. tabacum cv. Zhongyan 102. All the 50 tomato cultivars tested were highly sensitive to ToBRFV-SD. The complete genomic sequence of ToBRFV-SD shared the highest nucleotide and amino acid identities with isolate IL from Israel. In the phylogenetic tree constructed with the complete genomic sequence, all the ToBRFV isolates were clustered together and formed a sister branch with tobacco mosaic virus(TMV). Furthermore, a quadruplex RT-PCR system was developed that could differentiate ToBRFV from other economically important viruses affecting tomatoes, such as TMV, tomato mosaic virus, and tomato spotted wilt virus. The findings of this study enhance our understanding of the biological and molecular characteristics of ToBRFV and provide an efficient and effective detection method for multiple infections, which is helpful in the management of ToBRFV.展开更多
A real-time RT-PCR (RT-qPCR) assay for the detection of Tahyna virus was developed to monitor Tahyna virus infection in field-collected vector mosquito samples. The targets selected for the assay were S segment sequ...A real-time RT-PCR (RT-qPCR) assay for the detection of Tahyna virus was developed to monitor Tahyna virus infection in field-collected vector mosquito samples. The targets selected for the assay were S segment sequences encoding the nucleocapsid protein from the Tahyna virus. Primers and probes were selected in conserved regions by aligning genetic sequences from various Tahyna virus strains available from GenBank. The sensitivity of the RT-qPCR approach was compared to that of a standard plaque assay in BHK cells. RT-qPCR assay can detect 4.8 PFU of titrated Tahyna virus. Assay specificities were determined by testing a battery of arboviruses, including representative strains of Tahyna virus and other arthropod-borne viruses from China. Seven strains of Tahyna virus were confirmed as positive; the other seven species of arboviruses could not be detected by RT-qPCR. Additionally, the assay was used to detect Tahyna viral RNA in pooled mosquito samples. The RT-qPCR assay detected Tahyna virus in a sensitive, specific, and rapid manner; these findings support the use of the assay in viral surveillance.展开更多
Tomato mottle mosaic virus(ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits. Here, we identified the Shandong isolate of ToMMV(ToMMV-SD)...Tomato mottle mosaic virus(ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits. Here, we identified the Shandong isolate of ToMMV(ToMMV-SD) collected from symptomatic tomato fruits in Weifang, Shandong Province of China. ToMMV-SD caused symptoms such as severe mosaic, mottling, and necrosis of tomato leaves, yellow spot and necrotic lesions on tomato fruits. The obtained full genome of ToMMV-SD was 6 399 nucleotides(accession number MW373515) and had the highest identity of 99.5% with that of isolate SC13-051 from the United States of America at the genomic level. The infectious clone of ToMMV-SD was constructed and induced clear mosaic and necrotic symptoms onto Nicotiana benthamiana leaves. Several commercial tomato cultivars, harboring Tm-2~2 resistance gene, and pepper cultivars, containing L resistance gene, were susceptible to ToMMV-SD. Plants of Solanum melongena(eggplant) and Brassica pekinensis(napa cabbage) showed mottling symptoms, while N. tabacum cv. Zhongyan 100 displayed latent infection. ToMMV-SD did not infect plants of N. tabacum cv. Xanthi NN, Brassica rapa ssp. chinensis(bok choy), Raphanus sativus(radish), Vigna unguiculata cv. Yuanzhong 28-2(cowpea), or Tm-2~2 transgenic N. benthamiana. A quintuplex RT-PCR system differentiated ToMMV from tomato mosaic virus, tomato brown rugose fruit virus, tobacco mosaic virus, and tomato spotted wilt virus, with the threshold amount of 0.02 pg. These results highlight the threat posed by ToMMV to tomato and pepper cultivation and offer an efficient detection system for the simultaneous detection of four tobamoviruses and tomato spotted wilt virus infecting tomato plants in the field.展开更多
[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus (AIV) ; [Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 su...[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus (AIV) ; [Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 subtypes of AIV accessed in GenBank, and design primers( by Primer Premier 5.0) on high homologous region of these sequences, and then amplified by RT-PCR. [Result] The multiplex RT-PCR amplification, agarose gel electrophoresis and sequencing results showed that the self-designed primers are successful for detecting AIV. [Conclusion] It is feasible to rapidly diagnose AIV through this method.展开更多
This study developed a multiplex RT-PCR integrated with luminex technology to rapidly subtype simultaneously multiple influenza viruses. Primers and probes were designed to amplify NS and M genes of influenza A viruse...This study developed a multiplex RT-PCR integrated with luminex technology to rapidly subtype simultaneously multiple influenza viruses. Primers and probes were designed to amplify NS and M genes of influenza A viruses HA gene of ill, H3, H5, HT, H9 subtypes, and NA gene of the N1 and N2 subtypes. Universal super primers were introduced to establish a multiplex RT-PCR (GM RT-PCR). It included three stages of RT-PCR amplification, and then the RT-PCR products were further tested by LiquiChip probe, combined to give an influenza virus (IV) rapid high throughput subtyping test, designated as GMPLex. The IV GMPLex rapid high throughput subtyping test presents the following features: high throughput, able to determine the subtypes of 9 target genes in H1, H3, H5, H7, H9, N1, and N2 subtypes of the influenza A virus at one time; rapid, completing the influenza subtyping within 6 hours; high specificity, ensured the specificity of the different subtypes by using two nested degenerate primers and one probe, no cross reaction occurring between the subtypes, no non-specific reactions with other pathogens and high sensitivity. When used separately to detect the product of single GM RT-PCR for single H5 or N1 gene, the GMPLex test showed a sensitivity of 10-5(= 280ELDs0) forboth tests and the Luminex qualitative ratio results were 3.08 and 3.12, respectively. When used to detect the product of GM RT-PCR for H5N1 strain at the same time, both showed a sensitivity of 10-4(=2800 ELD50). The GMPLex rapid high throughput subtyping test can satisfy the needs of influenza rapid testing.展开更多
Fever and rash illnesses(FRIs)are a series of common diseaseswith fever and rashes as clinicalmanifestations,most of which are caused by viral infection.The rashes of FRIs are generally nonspecific;therefore it is dif...Fever and rash illnesses(FRIs)are a series of common diseaseswith fever and rashes as clinicalmanifestations,most of which are caused by viral infection.The rashes of FRIs are generally nonspecific;therefore it is difficult to identify FRIassociated viruses solely based on clinical symptoms.To achieve rapid and accurate identification of FRI pathogens,a multiplex one-step real-time reverse transcription-polymerase chain reaction(RT-PCR)assay was developed and evaluated in this study.Primers and probes were selected for the detection of measles virus(MeV),rubella virus(RV),human enterovirus(EV),varicella-zoster virus(VZV),dengue virus(DENV),human parvovirus B19(B19),Epstein-Barr virus(EBV),and human herpes virus 6(HHV-6),which cover the most common pathogenic viruses of FRIs.Detection of the eight FRI-associated viruses,which was divided into two groups/tubes,was simultaneously performed under universal optimized reaction conditions in multiplex one-step real-time RT-PCR assay.The multiplex realtime RT-PCR showed high sensitivity and specificity in detecting the eight FRI-associated viruses.The limits of detection(LODs)for the eight viruses were in the range of 47–177 copies/reaction,and no cross reactions for the eight FRIassociated viruses were found in the multiplex assay.In addition,the results of the multiplex real-time RT-PCR assay were consistent with the results of a monoplex real-time RT-PCR assay and sequencing for clinical specimens obtained from FRI patients.With its advantages of high efficiency and rapid and accurate diagnosis,multiplex real-time RT-PCR was very feasible for the early diagnosis of FRI pathogenic viruses and would be of great help for the proper treatment,monitoring,and initiation of preventive measures for FRI cases.展开更多
为建立可同时检测甘薯褪绿矮化病毒(SPCSV)、甘薯G病毒(SPVG)和甘薯羽状斑驳病毒(SPFMV)多重RT-PCR检测方法,本文根据SPCSV热激蛋白基因(hsp70)及SPVG、SPFMV外壳蛋白基因(CP)基因核苷酸序列的保守区域设计特异性引物,通过引...为建立可同时检测甘薯褪绿矮化病毒(SPCSV)、甘薯G病毒(SPVG)和甘薯羽状斑驳病毒(SPFMV)多重RT-PCR检测方法,本文根据SPCSV热激蛋白基因(hsp70)及SPVG、SPFMV外壳蛋白基因(CP)基因核苷酸序列的保守区域设计特异性引物,通过引物筛选,优化多重RT-PCR反应条件,建立了能同时检测SPCSV、SPVG和SPFMV 3种病毒的多重RT-PCR检测方法。该体系能有效扩增出大小为304、433、601 bp 3个特异性片段。测序结果表明3种病毒与参考序列的一致性达94%-99%。应用建立的多重RT-PCR检测方法可稳定、准确、灵敏地同时检测单一或复合侵染3种甘薯病毒,为甘薯脱毒和病毒病诊断奠定基础。展开更多
Coat protein gene of 12 isolates of Strawberry vein banding virus(SVBV) was studied by multiple sequence alignment and the primers located in conserved region were designed.The detection protocol for SVBV by reverse t...Coat protein gene of 12 isolates of Strawberry vein banding virus(SVBV) was studied by multiple sequence alignment and the primers located in conserved region were designed.The detection protocol for SVBV by reverse transcriptase polymerase chain reaction(RT-PCR) was developed.The primers of multiplex RT-PCR were selected by primer-primer interactions and the melting temperature.The annealing temperature,the concentration of PCR buffer,the extension temperature,the extension time and the concentration of pri-mers were optimized,respectively.A multiplex RT-PCR assay was made for simultaneous detecting Strawberry mottle virus(SMoV),Strawberry mild yellow edge virus(SMYEV) and SVBV.Both field-grown strawberries and microplants were detected effectively.It was the first report that multiplex RT-PCR was used to assay the efficacy of strawberry viruses elimination.展开更多
To develop a rapid and reliable detection method for Citrus yellow vein clearing virus(CYVCV), a quantitative real-time reverse transcriptionpolymerase chain reaction(q RT-PCR) system based on SYBR Green I was establi...To develop a rapid and reliable detection method for Citrus yellow vein clearing virus(CYVCV), a quantitative real-time reverse transcriptionpolymerase chain reaction(q RT-PCR) system based on SYBR Green I was established by using a pair of specific primers designed from its conserved coat protein gene. The sensitivity, specificity, and applicability of the system were evaluated accordingly. The results showed that amplicons were produced from CYVCV isolates, whereas no amplicons from non-CYVCV citrus virus samples, including Citrus tristeza virus(CTV) and Citrus tatter leaf virus(CTLV), were obtained. The sensitivity of the q RT-PCR was 100-fold higher than that of conventional RT-PCR. An excellent linear correlation(R2= 0.999) was obtained from two standard curves of c RNA, and the amplification efficiency was 102%. The data from field citrus samples detection showed that the q RT-PCR system could be used in determining the concentration of CYVCV in different citrus species.展开更多
Using homologous cloning method, partial fragments of coat protein (CP) gene of WMV, CMV and ZYMV were cloned from virus-infected melon in Xinjiang. The reaction system of multiplex RT-PCR was optimized based on sin...Using homologous cloning method, partial fragments of coat protein (CP) gene of WMV, CMV and ZYMV were cloned from virus-infected melon in Xinjiang. The reaction system of multiplex RT-PCR was optimized based on singleplex RT-PCR amplification conditions, using single factor analysis. Forth-eight samples were tested separately with multiplex RT-PCR. The results showed that both assays run to consistent results. The optimized multiplex RT-PCR system had certain accuracy and stability, and could be used for quick detection, pathogen identification and positive screening of WMV ( Watermelon mosaic virus), CMV ( Cucumber mosaic virus), and ZYMV (Zucchini yellow mosaic virus). The distribution status and infection form of three kinds of viruses was determined in main melon growing area of Xinjiang, providing theoretical foundation and experimental evidence for virus diseases control, field testing, epidemiological investigation and melon virus-resistant breeding in Xinjiang.展开更多
Dear Editor,Influenza A viruses(IAVs)are single-stranded,negative sense RNA viruses.IAV subtype is determined on the basis of the viral surface glycoproteins,hemagglutinin(HA),and neuraminidase(NA).To date,18 HA and 1...Dear Editor,Influenza A viruses(IAVs)are single-stranded,negative sense RNA viruses.IAV subtype is determined on the basis of the viral surface glycoproteins,hemagglutinin(HA),and neuraminidase(NA).To date,18 HA and 11NA subtypes have been reported(Tong et al.,2012).展开更多
Influenza viruses are major respiratory pathogens known to infect human and a variety of animals and are widely prevalent worldwide.Genome structure of influenza D virus(IDV)is identical to that of influenza C virus(I...Influenza viruses are major respiratory pathogens known to infect human and a variety of animals and are widely prevalent worldwide.Genome structure of influenza D virus(IDV)is identical to that of influenza C virus(ICV),and phylogenetic analyses suggest that IDV and ICV share a common ancestry and high homology.To date,the prevalence of ICV and IDV in China is unclear,but these viruses represent a potential threat to public health due to cross-species transmission and zoonotic potential.To efficiently monitor ICV and IDV,it is necessary to establish a dual detection method to understand their prevalence and conduct in-depth research.A duplex real-time PCR method for the simultaneous detection of ICV and IDV was developed.TaqMan fluorescent probes and specific primers targeting NP gene of ICV and PB1 gene of IDV were designed.This method exhibited good specificity and sensitivity,and the detection limit reached 1 × 10^(1) copies/pL of plasmid standards of each pathogen.Thirty-one clinical swine samples and 10 clinical cattle samples were analyzed using this method.One positive sample of IDV was detected,and the accuracy of clinical test results was verified by conventional PCR and DNA sequencing.The duplex real-time PCR detection method represents a sensitive and specific tool to detect IG/and IDV,It provides technical support for virus research and clinical diagnosis of ICV and IDV.This information will benefit animal and human health.展开更多
To develop a rapid and high-sensitivity method for detection of grapevine virus E(GVE),a SYBR Green based real-time fluorescence quantitative RT-PCR method(RT-qPCR)was established.This method could be used to detect G...To develop a rapid and high-sensitivity method for detection of grapevine virus E(GVE),a SYBR Green based real-time fluorescence quantitative RT-PCR method(RT-qPCR)was established.This method could be used to detect GVE specifically,and the sensitivity was about 100 times greater than conventional RT-PCR.An excellent linear correlation(R=0.997)and a high amplification efficiency(E=97.5%)were obtained from the standard curve of this method.Reproducibility tests revealed that the coefficients of variation in the intra-and inter-assay results were 0.31-1.03%and 0.82--262%,respectively,indicating a good reproduiblity.The RT-qPCR method could be used to detect GVE in a wide range of grapevine sample types.The detection rates of RT-qPCR for nearly all sample types from different positions and seasons were higher than conventional RT-PCR.The detection rates in spring,summer,autumn and winter increased gradually.Samples in autumn and winter were best for detection,and the detection rates of most samples were 80-100%,which were 10 to 40%higher than conventional RT-PCR.In general,old petioles and branches were the best tissues for GVE detection.The detection rates of these samples in each season were all 100%,which were 20 to 40%higher than conventional RT-PCR.The second highest rates were in the old leaf,with detection rates for RT-qPCR of 80-100%in all seasons,which were 20 to 40%higher than conventional RT-PCR.GVE could be difficultly detected in young leaves by conventional RT-PCR,and the detection rates were only 0-50%,while by RT-qPCR the rates could increase to 0--80%.A total of 33 out of 363 samples(belonging to 68 cultivars)from 20 regions in China were detected to be positive by RT-qPCR(9.1%),which was more than twice the rate of the conventional RT-PCR(3.9%).展开更多
Twenty five serotypes of Bluetongue virus (BTV) have been identified worldwide. Rapid and reliable methods of virus universal detection are essential for fighting against bluetongue (BT). We have therefore developed a...Twenty five serotypes of Bluetongue virus (BTV) have been identified worldwide. Rapid and reliable methods of virus universal detection are essential for fighting against bluetongue (BT). We have therefore developed and evaluated a pair of primers which can detect various serotypes of BTV by RT-PCR. Analysis of the viral protein 7 (VP7) and the non-structural protein (NS1) gene from different serotypes of BTV by DNAstar showed that the 5' end of the NS1 gene is the most conserved region. The primer pairs (P1 and P2) were designed based on the highly conserved region of NS1. The novel primers were evaluated by detecting BTV serotypes 1, 3, 5, 8, 10, 11, 21 and 22. The specificity of the primers was estimated by comparing to gene sequences of viruses published in GenBank, and further assessed by detecting BTV serotype 1-12 and Epizootic hemorrhagic disease virus (EHDV) serotype 1-4. The sensitivity and repeatability of PCR with the novel primers were evaluated by successfully detecting the recombinant plasmid pGEM-T121 containing the diagnosed nucleotide sequence. Our results suggest that these unique primers can be used in high throughout and universal detection of the NS1 gene from various BTV serotypes.展开更多
基金supported by a grant from the Out-standing Person Innovation Foundation of Henan,China(0621002100)
文摘A multiplex reverse transcriptase-polymerase chain reaction(multiplex RT-PCR) assay was developed and subsequently evaluated for its efficacy in the detection of multiple viral infections simultaneously,in swine.Specific primers for each of the 3 RNA viruses,North American genotype porcine reproductive and respiratory syndrome virus,Japanese encephalitis virus,and swine influenza virus,were used in the testing procedure.The assay was shown to be highly sensitive because it could detect as little as 10-5 ng of each of the respective amplicons in a single sample containing a composite of all 3 viruses.The assay was also effective in detecting one or more of the same viruses in various combinations in specimens,including lymph nodes,lungs,spleens,and tonsils,collected from clinically ill pigs and in spleen specimens collected from aborted pig fetuses.The results from the multiplex RT-PCR were confirmed by virus isolation.The relative efficiency(compared to the efficiency of separate assays for each virus) and apparent sensitivity of the multiplex RT-PCR method show that this method has potential for application in routine molecular diagnostic procedures.
基金NIH Grant (2U54AI057160-06)Development Grant of State Key Laboratory for Infectious Disease Prevention and Control (2008SKLID105)
文摘Arboviruses represent a serious problem to public health and agriculture worldwide. Fast, accurate identification of the viral agents of arbovirus-associated disease is essential for epidemiological surveillance and laboratory investigation. We developed a cost-effective, rapid, and highly sensitive one-step "triplex RT-PCR enzyme hybridization" assay for simultaneous detections of Japanese Encephallitis virus (JEV, Flaviviridae), Getah virus (GETV, Togaviridae), and Tahyna virus (TAHV, Bunyaviridae) using three pairs of primers to amplify three target sequences in one RT-PCR reaction. The analytical sensitivity of this assay was 1 PFU/mL for JEV, 10 PFU/mL for GETV, and 10 PFU/mL for TAHV. This assay is significantly more rapid and less expensive than the traditional serological detection and single RT-PCR reaction methods. When "triplex RT-PCR enzyme hybridization" was applied to 29 cerebrospinal fluid (CSF) samples that were JEV-positive by normal RT-PCR assay, all samples were strongly positive for JEV, but negative for GETV and TAHV, demonstrating a good sensitivity, specificity, and performance at CSF specimen detection.
基金supported by the Center of Excellence in Clinical Virology.Chulalongkorn University,CU Centenary Academic Development ProjectKing Chulalongkorn Memorial Hospital,the National Research University Project of CHEthe Ratchadaphiseksonphot Endowment Fund(HR1155A)
文摘Objective:To develop diagnostic test for detection chikungunya virus(CHIKV and Dengue virus (DENV) infection.Methods:We have performed a rapid,accurate laboratory confirmative method to simultaneously detect,quantify and differentiate CHIKV and DENV infection by single-step multiplex real-time RT-PCR.Results:The assay’s sensitivity was 97.65%,specificity was 92.59% and accuracy was 95.82%when compared to conventional RT-PCR.Additionally,there was no cross-reaction between CHIKV,DENV,Japanese encephalitis virus,hepatitis C,hepatitis A or hepatitis E virus.Conclusions:This rapid and reliable assay provides a means for simultaneous early diagnosis of CHIKV and DENV in a single-step reaction.
基金supported by the grants from the National Natural Science Foundation of China (31720103912 and 31801704)the ’Taishan Scholar’ Construction Project, China (TS201712023)。
文摘Tomato brown rugose fruit virus(ToBRFV) is a novel tobamovirus firstly reported in 2015 and poses a severe threat to the tomato industry. So far, it has spread to 10 countries in America, Asia, and Europe. In 2019, ToBRFV was identified in Shandong Province(ToBRFV-SD), China. In this study, it was shown that ToBRFV-SD induced mild to severe mosaic and blistering on leaves, necrosis on sepals and pedicles, and deformation, yellow spots, and brown rugose necrotic lesions on fruits. ToBRFV-SD induced distinct symptoms on plants of tomato, Capsicum annumm, and Nicotiana benthamiana, and caused latent infection on plants of Solanum tuberosum, Solanum melongena, and N. tabacum cv. Zhongyan 102. All the 50 tomato cultivars tested were highly sensitive to ToBRFV-SD. The complete genomic sequence of ToBRFV-SD shared the highest nucleotide and amino acid identities with isolate IL from Israel. In the phylogenetic tree constructed with the complete genomic sequence, all the ToBRFV isolates were clustered together and formed a sister branch with tobacco mosaic virus(TMV). Furthermore, a quadruplex RT-PCR system was developed that could differentiate ToBRFV from other economically important viruses affecting tomatoes, such as TMV, tomato mosaic virus, and tomato spotted wilt virus. The findings of this study enhance our understanding of the biological and molecular characteristics of ToBRFV and provide an efficient and effective detection method for multiple infections, which is helpful in the management of ToBRFV.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2013ZX10004-101)
文摘A real-time RT-PCR (RT-qPCR) assay for the detection of Tahyna virus was developed to monitor Tahyna virus infection in field-collected vector mosquito samples. The targets selected for the assay were S segment sequences encoding the nucleocapsid protein from the Tahyna virus. Primers and probes were selected in conserved regions by aligning genetic sequences from various Tahyna virus strains available from GenBank. The sensitivity of the RT-qPCR approach was compared to that of a standard plaque assay in BHK cells. RT-qPCR assay can detect 4.8 PFU of titrated Tahyna virus. Assay specificities were determined by testing a battery of arboviruses, including representative strains of Tahyna virus and other arthropod-borne viruses from China. Seven strains of Tahyna virus were confirmed as positive; the other seven species of arboviruses could not be detected by RT-qPCR. Additionally, the assay was used to detect Tahyna viral RNA in pooled mosquito samples. The RT-qPCR assay detected Tahyna virus in a sensitive, specific, and rapid manner; these findings support the use of the assay in viral surveillance.
基金supported by the grants from the National Natural Science Foundation of China(32072387)the‘Taishan Scholar’Construction Project,China(TS201712023)。
文摘Tomato mottle mosaic virus(ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits. Here, we identified the Shandong isolate of ToMMV(ToMMV-SD) collected from symptomatic tomato fruits in Weifang, Shandong Province of China. ToMMV-SD caused symptoms such as severe mosaic, mottling, and necrosis of tomato leaves, yellow spot and necrotic lesions on tomato fruits. The obtained full genome of ToMMV-SD was 6 399 nucleotides(accession number MW373515) and had the highest identity of 99.5% with that of isolate SC13-051 from the United States of America at the genomic level. The infectious clone of ToMMV-SD was constructed and induced clear mosaic and necrotic symptoms onto Nicotiana benthamiana leaves. Several commercial tomato cultivars, harboring Tm-2~2 resistance gene, and pepper cultivars, containing L resistance gene, were susceptible to ToMMV-SD. Plants of Solanum melongena(eggplant) and Brassica pekinensis(napa cabbage) showed mottling symptoms, while N. tabacum cv. Zhongyan 100 displayed latent infection. ToMMV-SD did not infect plants of N. tabacum cv. Xanthi NN, Brassica rapa ssp. chinensis(bok choy), Raphanus sativus(radish), Vigna unguiculata cv. Yuanzhong 28-2(cowpea), or Tm-2~2 transgenic N. benthamiana. A quintuplex RT-PCR system differentiated ToMMV from tomato mosaic virus, tomato brown rugose fruit virus, tobacco mosaic virus, and tomato spotted wilt virus, with the threshold amount of 0.02 pg. These results highlight the threat posed by ToMMV to tomato and pepper cultivation and offer an efficient detection system for the simultaneous detection of four tobamoviruses and tomato spotted wilt virus infecting tomato plants in the field.
基金Supported by Important Project of Jinlin Provincial Science and Technology Department(20065020)~~
文摘[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus (AIV) ; [Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 subtypes of AIV accessed in GenBank, and design primers( by Primer Premier 5.0) on high homologous region of these sequences, and then amplified by RT-PCR. [Result] The multiplex RT-PCR amplification, agarose gel electrophoresis and sequencing results showed that the self-designed primers are successful for detecting AIV. [Conclusion] It is feasible to rapidly diagnose AIV through this method.
基金The Basic Rasearch Project of Shenzhen(JC200903190778A)
文摘This study developed a multiplex RT-PCR integrated with luminex technology to rapidly subtype simultaneously multiple influenza viruses. Primers and probes were designed to amplify NS and M genes of influenza A viruses HA gene of ill, H3, H5, HT, H9 subtypes, and NA gene of the N1 and N2 subtypes. Universal super primers were introduced to establish a multiplex RT-PCR (GM RT-PCR). It included three stages of RT-PCR amplification, and then the RT-PCR products were further tested by LiquiChip probe, combined to give an influenza virus (IV) rapid high throughput subtyping test, designated as GMPLex. The IV GMPLex rapid high throughput subtyping test presents the following features: high throughput, able to determine the subtypes of 9 target genes in H1, H3, H5, H7, H9, N1, and N2 subtypes of the influenza A virus at one time; rapid, completing the influenza subtyping within 6 hours; high specificity, ensured the specificity of the different subtypes by using two nested degenerate primers and one probe, no cross reaction occurring between the subtypes, no non-specific reactions with other pathogens and high sensitivity. When used separately to detect the product of single GM RT-PCR for single H5 or N1 gene, the GMPLex test showed a sensitivity of 10-5(= 280ELDs0) forboth tests and the Luminex qualitative ratio results were 3.08 and 3.12, respectively. When used to detect the product of GM RT-PCR for H5N1 strain at the same time, both showed a sensitivity of 10-4(=2800 ELD50). The GMPLex rapid high throughput subtyping test can satisfy the needs of influenza rapid testing.
基金supported by the Key Technologies R&D Program of the National Ministry of Science[grant numbers 2018ZX10711001,2018ZX10713002,2018ZX10713001-003,and 2017ZX10104001-002].
文摘Fever and rash illnesses(FRIs)are a series of common diseaseswith fever and rashes as clinicalmanifestations,most of which are caused by viral infection.The rashes of FRIs are generally nonspecific;therefore it is difficult to identify FRIassociated viruses solely based on clinical symptoms.To achieve rapid and accurate identification of FRI pathogens,a multiplex one-step real-time reverse transcription-polymerase chain reaction(RT-PCR)assay was developed and evaluated in this study.Primers and probes were selected for the detection of measles virus(MeV),rubella virus(RV),human enterovirus(EV),varicella-zoster virus(VZV),dengue virus(DENV),human parvovirus B19(B19),Epstein-Barr virus(EBV),and human herpes virus 6(HHV-6),which cover the most common pathogenic viruses of FRIs.Detection of the eight FRI-associated viruses,which was divided into two groups/tubes,was simultaneously performed under universal optimized reaction conditions in multiplex one-step real-time RT-PCR assay.The multiplex realtime RT-PCR showed high sensitivity and specificity in detecting the eight FRI-associated viruses.The limits of detection(LODs)for the eight viruses were in the range of 47–177 copies/reaction,and no cross reactions for the eight FRIassociated viruses were found in the multiplex assay.In addition,the results of the multiplex real-time RT-PCR assay were consistent with the results of a monoplex real-time RT-PCR assay and sequencing for clinical specimens obtained from FRI patients.With its advantages of high efficiency and rapid and accurate diagnosis,multiplex real-time RT-PCR was very feasible for the early diagnosis of FRI pathogenic viruses and would be of great help for the proper treatment,monitoring,and initiation of preventive measures for FRI cases.
文摘为建立可同时检测甘薯褪绿矮化病毒(SPCSV)、甘薯G病毒(SPVG)和甘薯羽状斑驳病毒(SPFMV)多重RT-PCR检测方法,本文根据SPCSV热激蛋白基因(hsp70)及SPVG、SPFMV外壳蛋白基因(CP)基因核苷酸序列的保守区域设计特异性引物,通过引物筛选,优化多重RT-PCR反应条件,建立了能同时检测SPCSV、SPVG和SPFMV 3种病毒的多重RT-PCR检测方法。该体系能有效扩增出大小为304、433、601 bp 3个特异性片段。测序结果表明3种病毒与参考序列的一致性达94%-99%。应用建立的多重RT-PCR检测方法可稳定、准确、灵敏地同时检测单一或复合侵染3种甘薯病毒,为甘薯脱毒和病毒病诊断奠定基础。
文摘Coat protein gene of 12 isolates of Strawberry vein banding virus(SVBV) was studied by multiple sequence alignment and the primers located in conserved region were designed.The detection protocol for SVBV by reverse transcriptase polymerase chain reaction(RT-PCR) was developed.The primers of multiplex RT-PCR were selected by primer-primer interactions and the melting temperature.The annealing temperature,the concentration of PCR buffer,the extension temperature,the extension time and the concentration of pri-mers were optimized,respectively.A multiplex RT-PCR assay was made for simultaneous detecting Strawberry mottle virus(SMoV),Strawberry mild yellow edge virus(SMYEV) and SVBV.Both field-grown strawberries and microplants were detected effectively.It was the first report that multiplex RT-PCR was used to assay the efficacy of strawberry viruses elimination.
基金the support provided by the Fundamental Research Funds for Central Universities(XDJK2015C091,2015A009,2014A001)Chongqing Science and Technology Demonstration Project(cstc2014zktjccx BX0051)+1 种基金Chongqing ParEu Scholars Programthe National Key Technology Support Project(2012BAD19B06)
文摘To develop a rapid and reliable detection method for Citrus yellow vein clearing virus(CYVCV), a quantitative real-time reverse transcriptionpolymerase chain reaction(q RT-PCR) system based on SYBR Green I was established by using a pair of specific primers designed from its conserved coat protein gene. The sensitivity, specificity, and applicability of the system were evaluated accordingly. The results showed that amplicons were produced from CYVCV isolates, whereas no amplicons from non-CYVCV citrus virus samples, including Citrus tristeza virus(CTV) and Citrus tatter leaf virus(CTLV), were obtained. The sensitivity of the q RT-PCR was 100-fold higher than that of conventional RT-PCR. An excellent linear correlation(R2= 0.999) was obtained from two standard curves of c RNA, and the amplification efficiency was 102%. The data from field citrus samples detection showed that the q RT-PCR system could be used in determining the concentration of CYVCV in different citrus species.
基金Supported by Research on Cultivating WMV-resistant Hami Melons using RNA Interference Technology(xjnkq-2013033)Research on Cultivating Antiviral Hami Melons using RNA Interference Technology(YB201307)Integration and Application of Systematical Prevention and Control Technology against Main Diseases in Xinjiang Melon(SY12007)
文摘Using homologous cloning method, partial fragments of coat protein (CP) gene of WMV, CMV and ZYMV were cloned from virus-infected melon in Xinjiang. The reaction system of multiplex RT-PCR was optimized based on singleplex RT-PCR amplification conditions, using single factor analysis. Forth-eight samples were tested separately with multiplex RT-PCR. The results showed that both assays run to consistent results. The optimized multiplex RT-PCR system had certain accuracy and stability, and could be used for quick detection, pathogen identification and positive screening of WMV ( Watermelon mosaic virus), CMV ( Cucumber mosaic virus), and ZYMV (Zucchini yellow mosaic virus). The distribution status and infection form of three kinds of viruses was determined in main melon growing area of Xinjiang, providing theoretical foundation and experimental evidence for virus diseases control, field testing, epidemiological investigation and melon virus-resistant breeding in Xinjiang.
基金partially supported by the National Institutes of Health(grant no.P20GM103646)the United States Department of Agriculture Animal and Plant Health Inspection Service(agreement 14-7428-1041-CA)
文摘Dear Editor,Influenza A viruses(IAVs)are single-stranded,negative sense RNA viruses.IAV subtype is determined on the basis of the viral surface glycoproteins,hemagglutinin(HA),and neuraminidase(NA).To date,18 HA and 11NA subtypes have been reported(Tong et al.,2012).
基金This work was financially supported by the National Key Research and Development Program of China(2017YFD0500101)the Fundamental Research Funds for the Central Universities(Y0201900459).
文摘Influenza viruses are major respiratory pathogens known to infect human and a variety of animals and are widely prevalent worldwide.Genome structure of influenza D virus(IDV)is identical to that of influenza C virus(ICV),and phylogenetic analyses suggest that IDV and ICV share a common ancestry and high homology.To date,the prevalence of ICV and IDV in China is unclear,but these viruses represent a potential threat to public health due to cross-species transmission and zoonotic potential.To efficiently monitor ICV and IDV,it is necessary to establish a dual detection method to understand their prevalence and conduct in-depth research.A duplex real-time PCR method for the simultaneous detection of ICV and IDV was developed.TaqMan fluorescent probes and specific primers targeting NP gene of ICV and PB1 gene of IDV were designed.This method exhibited good specificity and sensitivity,and the detection limit reached 1 × 10^(1) copies/pL of plasmid standards of each pathogen.Thirty-one clinical swine samples and 10 clinical cattle samples were analyzed using this method.One positive sample of IDV was detected,and the accuracy of clinical test results was verified by conventional PCR and DNA sequencing.The duplex real-time PCR detection method represents a sensitive and specific tool to detect IG/and IDV,It provides technical support for virus research and clinical diagnosis of ICV and IDV.This information will benefit animal and human health.
基金This research was supported by the earmarked fund for China Agriculture Research System(CARS-29-bC-1).
文摘To develop a rapid and high-sensitivity method for detection of grapevine virus E(GVE),a SYBR Green based real-time fluorescence quantitative RT-PCR method(RT-qPCR)was established.This method could be used to detect GVE specifically,and the sensitivity was about 100 times greater than conventional RT-PCR.An excellent linear correlation(R=0.997)and a high amplification efficiency(E=97.5%)were obtained from the standard curve of this method.Reproducibility tests revealed that the coefficients of variation in the intra-and inter-assay results were 0.31-1.03%and 0.82--262%,respectively,indicating a good reproduiblity.The RT-qPCR method could be used to detect GVE in a wide range of grapevine sample types.The detection rates of RT-qPCR for nearly all sample types from different positions and seasons were higher than conventional RT-PCR.The detection rates in spring,summer,autumn and winter increased gradually.Samples in autumn and winter were best for detection,and the detection rates of most samples were 80-100%,which were 10 to 40%higher than conventional RT-PCR.In general,old petioles and branches were the best tissues for GVE detection.The detection rates of these samples in each season were all 100%,which were 20 to 40%higher than conventional RT-PCR.The second highest rates were in the old leaf,with detection rates for RT-qPCR of 80-100%in all seasons,which were 20 to 40%higher than conventional RT-PCR.GVE could be difficultly detected in young leaves by conventional RT-PCR,and the detection rates were only 0-50%,while by RT-qPCR the rates could increase to 0--80%.A total of 33 out of 363 samples(belonging to 68 cultivars)from 20 regions in China were detected to be positive by RT-qPCR(9.1%),which was more than twice the rate of the conventional RT-PCR(3.9%).
基金Hi-Tech Research and Development Program of China (2006AA10Z446)
文摘Twenty five serotypes of Bluetongue virus (BTV) have been identified worldwide. Rapid and reliable methods of virus universal detection are essential for fighting against bluetongue (BT). We have therefore developed and evaluated a pair of primers which can detect various serotypes of BTV by RT-PCR. Analysis of the viral protein 7 (VP7) and the non-structural protein (NS1) gene from different serotypes of BTV by DNAstar showed that the 5' end of the NS1 gene is the most conserved region. The primer pairs (P1 and P2) were designed based on the highly conserved region of NS1. The novel primers were evaluated by detecting BTV serotypes 1, 3, 5, 8, 10, 11, 21 and 22. The specificity of the primers was estimated by comparing to gene sequences of viruses published in GenBank, and further assessed by detecting BTV serotype 1-12 and Epizootic hemorrhagic disease virus (EHDV) serotype 1-4. The sensitivity and repeatability of PCR with the novel primers were evaluated by successfully detecting the recombinant plasmid pGEM-T121 containing the diagnosed nucleotide sequence. Our results suggest that these unique primers can be used in high throughout and universal detection of the NS1 gene from various BTV serotypes.