RTTOV(Radiative Transfer for TOVS)是近期出现的一个比较优秀的快速辐射传输模式。该研究介绍了RTTOV工作的原理和方法,从提高数值预报模式准确度和模拟卫星辐射亮温2个方面出发,综述了RTTOV模式的应用研究进展。结果显示,利用RTTOV...RTTOV(Radiative Transfer for TOVS)是近期出现的一个比较优秀的快速辐射传输模式。该研究介绍了RTTOV工作的原理和方法,从提高数值预报模式准确度和模拟卫星辐射亮温2个方面出发,综述了RTTOV模式的应用研究进展。结果显示,利用RTTOV将卫星资料直接同化到数值预报模式中,能显著提高数值预报的准确度;同时,RTTOV能够较好地模拟晴空条件下卫星接收到的辐射亮温,有云条件下的模拟值与实测值之间的误差大于晴空条件。利用RTTOV模拟得到的亮温进行仿云图制作,在一定程度上可以判断云体和云系的移动及发展变化,进而改善气象预报和保障业务。展开更多
The sounding data of meteorological satellites provide not only the real time weather information about the distribution of both cloud and rainfall,but also some others about the movement and state of atmosphere.They ...The sounding data of meteorological satellites provide not only the real time weather information about the distribution of both cloud and rainfall,but also some others about the movement and state of atmosphere.They are important variables and parameters for NWP model used to simulate and predict atmospheric state.In order to introduce remote sensing information from satellites into NWP model,there is an efficient way of establishing an RT model by use of the atmosphere radiation sounding data of meteorological satellites to get the variables and parameters valuable to NWP model.In this paper,we set up profiles of air temperature and water vapor from the surface to upper (0.1 hPa) using the radiosounding data and the surface data from May to August 1998 atmosphere East Asia.A TOVS RT model (RTTOV5) is provided to compute the value of radiation value of HIRS channels in NOAA14.Then the radiation values of 19 HIRS channels are gotten.After matching these data computed by the RT model and the corresponding values coming from satellite sounding in time,the statistic distribution of bias between tile model output and the satellite sounding at each sounding channel can be gotten.At the same time.the distribution of RMS to every TOVS HIRS channel,the standard biases to different scanning angle to each channel are also obtained.展开更多
针对搭载于风云三号C星(FY-3C)上的微波湿温探测仪(Microwave Humidity and Temperature Sounder,MWHTS),建立了海洋晴空大气条件下温湿廓线同时反演的一维变分反演系统.通过对影响反演精度的各个因素进行分析,确立了该系统的输入参...针对搭载于风云三号C星(FY-3C)上的微波湿温探测仪(Microwave Humidity and Temperature Sounder,MWHTS),建立了海洋晴空大气条件下温湿廓线同时反演的一维变分反演系统.通过对影响反演精度的各个因素进行分析,确立了该系统的输入参数.对于FY-3C/MWHTS观测亮温与快速辐射传输(Radiative Transfer Model for TOVS,RTTOV)模型的模拟亮温之间的偏差和角度依赖性,采用逐像元统计回归校正方法进行校正.选择西北太平洋海域晴空条件下的校正亮温数据进行温湿廓线的反演,并利用欧洲中期天气预报中心再分析数据集对反演结果进行验证,结果表明:反演的温度廓线和相对湿度廓线的最大平均偏差分别为1.09K和5.4%,最大均方根误差分别为1.48K和22.69%,与未校正亮温的反演结果相比,温度廓线的均方根误差最大可减小1.56K,湿度廓线的均方根误差最大可减小14.71%.反演温湿廓线与背景廓线的精度对比表明:反演的温度廓线在10~70hPa、300~350hPa和700~850hPa内的精度高于背景廓线的精度,而反演湿度廓线的精度除了825~875hPa,其他范围均高于背景廓线的精度,因此FY-3C/MWHTS观测亮温的反演结果可进一步提高预报廓线精度.展开更多
A new static microwave sounding unit (MSU) channel 4 weighting function is obtained from using Coupled Model Inter-comparison Project, Phase 5 (CMIP5) historical multimodel simulations as inputs into the fast Radi...A new static microwave sounding unit (MSU) channel 4 weighting function is obtained from using Coupled Model Inter-comparison Project, Phase 5 (CMIP5) historical multimodel simulations as inputs into the fast Radiative Transfer Model for TOVS (RTTOV v10). For the same CMIP5 model simulations, it is demonstrated that the computed MSU channel 4 brightness temperature (T4) trends in the lower stratosphere over both the globe and the tropics using the proposed weighting function are equivalent to those calculated by RTTOV, but show more cooling than those computed using the traditional UAH (University of Alabama at Huntsville) or RSS (Remote Sensing Systems in Santa Rosa, California) static weighting functions. The new static weighting function not only reduces the computational cost, but also reveals reasons why trends using a radiative transfer model are different from those using a traditional static weighting function. This study also shows that CMIP5 model simulated T4 trends using the traditional UAH or RSS static weighting functions show less cooling than satellite observations over the globe and the tropics. Although not completely removed, this difference can be reduced using the proposed weighting function to some extent, especially over the tropics. This work aims to explore the reasons for the trend differences and to see to what extent they are related to the inaccurate weighting functions. This would also help distinguish other sources for trend errors and thus better understand the climate change in the lower stratosphere.展开更多
为了定量评估对数正态谱分布假设对水云光学厚度(COT)与有效粒子半径(Re)反演的影响,利用欧洲中期数值天气预报中心建立的RTTOV(Radiative Transfer for TIROS Operational Vertical Sounder)模式,对比模拟了基于对数正态谱和修正Gamma...为了定量评估对数正态谱分布假设对水云光学厚度(COT)与有效粒子半径(Re)反演的影响,利用欧洲中期数值天气预报中心建立的RTTOV(Radiative Transfer for TIROS Operational Vertical Sounder)模式,对比模拟了基于对数正态谱和修正Gamma谱两种云滴谱分布下FY-4A/AGRI(Advanced Geosynchronous Radiation Imager)的第2、5通道液态水云的反射率,分析了这两个谱分布假设条件下水云反射率随COT以及Re的变化特征。在此基础上,建立了两种谱分布条件下的COT和Re查算表,并基于2020年夏季的一个初生对流云个例,定量分析了云滴谱分布类型对云参数反演结果的影响。结果表明,在第2通道,两个云滴谱类型假设下计算的反射率仅有0.1%~2%的差异,但在第5通道,采用修正Gamma云滴谱计算的反射率比采用对数正态云滴谱计算的反射率低10%~20%。反演结果表明,采用对数正态云滴谱反演的有效粒子半径Re比采用修正Gamma云滴谱反演的Re整体偏大,前者反演的Re集中在15~35μm,而后者反演的Re集中在10~30μm。采用两种云滴谱反演的COT的空间一致性良好,相差-2%~5%。展开更多
This study simulated FY-2 D satellite infrared brightness images based on the WRF and RTTOV models. The effects of prediction errors in WRF micro-and macroscale cloud variables on FY-2 D infrared brightness temperatur...This study simulated FY-2 D satellite infrared brightness images based on the WRF and RTTOV models. The effects of prediction errors in WRF micro-and macroscale cloud variables on FY-2 D infrared brightness temperature accuracy were analyzed. The principle findings were as follows. In the T+0–48 h simulation time, the root mean square errors of the simulated brightness temperatures were within the range 10–27 K, i.e., better than the range of 20–40 K achieved previously. In the T+0–24 h simulation time, the correlation coefficients between the simulated and measured brightness temperatures for all four channels were >0.5. The simulation performance of water channel IR3 was stable and the best. The four types of cloud microphysical scheme considered all showed that the simulated values of brightness temperature in clouds were too high and that the distributions of cloud systems were incomplete, especially in typhoon areas. The performance of the THOM scheme was considered best, followed in descending order by the WSM6, WDM6, and LIN schemes. Compared with observed values, the maximum deviation appeared in the range 253–273 K for all schemes. On the microscale, the snow water mixing ratio of the THOM scheme was much bigger than that of the other schemes. Improving the production efficiency or increasing the availability of solid water in the cloud microphysical scheme would provide slight benefit for brightness temperature simulations. On the macroscale, the cloud amount obtained by the scheme used in this study was small. Improving the diagnostic scheme for cloud amount, especially high-level cloud, could improve the accuracy of brightness temperature simulations. These results could provide an intuitive reference for forecasters and constitute technical support for the creation of simulated brightness temperature images for the FY-4 satellite.展开更多
文摘RTTOV(Radiative Transfer for TOVS)是近期出现的一个比较优秀的快速辐射传输模式。该研究介绍了RTTOV工作的原理和方法,从提高数值预报模式准确度和模拟卫星辐射亮温2个方面出发,综述了RTTOV模式的应用研究进展。结果显示,利用RTTOV将卫星资料直接同化到数值预报模式中,能显著提高数值预报的准确度;同时,RTTOV能够较好地模拟晴空条件下卫星接收到的辐射亮温,有云条件下的模拟值与实测值之间的误差大于晴空条件。利用RTTOV模拟得到的亮温进行仿云图制作,在一定程度上可以判断云体和云系的移动及发展变化,进而改善气象预报和保障业务。
基金This paper is supported by the National Key Project of Basic Theory Research"the Formation Mechanism and Prediction Theory of Severe Climatic and Synoptic Disasters in China" under Grant 199804096.
文摘The sounding data of meteorological satellites provide not only the real time weather information about the distribution of both cloud and rainfall,but also some others about the movement and state of atmosphere.They are important variables and parameters for NWP model used to simulate and predict atmospheric state.In order to introduce remote sensing information from satellites into NWP model,there is an efficient way of establishing an RT model by use of the atmosphere radiation sounding data of meteorological satellites to get the variables and parameters valuable to NWP model.In this paper,we set up profiles of air temperature and water vapor from the surface to upper (0.1 hPa) using the radiosounding data and the surface data from May to August 1998 atmosphere East Asia.A TOVS RT model (RTTOV5) is provided to compute the value of radiation value of HIRS channels in NOAA14.Then the radiation values of 19 HIRS channels are gotten.After matching these data computed by the RT model and the corresponding values coming from satellite sounding in time,the statistic distribution of bias between tile model output and the satellite sounding at each sounding channel can be gotten.At the same time.the distribution of RMS to every TOVS HIRS channel,the standard biases to different scanning angle to each channel are also obtained.
文摘针对搭载于风云三号C星(FY-3C)上的微波湿温探测仪(Microwave Humidity and Temperature Sounder,MWHTS),建立了海洋晴空大气条件下温湿廓线同时反演的一维变分反演系统.通过对影响反演精度的各个因素进行分析,确立了该系统的输入参数.对于FY-3C/MWHTS观测亮温与快速辐射传输(Radiative Transfer Model for TOVS,RTTOV)模型的模拟亮温之间的偏差和角度依赖性,采用逐像元统计回归校正方法进行校正.选择西北太平洋海域晴空条件下的校正亮温数据进行温湿廓线的反演,并利用欧洲中期天气预报中心再分析数据集对反演结果进行验证,结果表明:反演的温度廓线和相对湿度廓线的最大平均偏差分别为1.09K和5.4%,最大均方根误差分别为1.48K和22.69%,与未校正亮温的反演结果相比,温度廓线的均方根误差最大可减小1.56K,湿度廓线的均方根误差最大可减小14.71%.反演温湿廓线与背景廓线的精度对比表明:反演的温度廓线在10~70hPa、300~350hPa和700~850hPa内的精度高于背景廓线的精度,而反演湿度廓线的精度除了825~875hPa,其他范围均高于背景廓线的精度,因此FY-3C/MWHTS观测亮温的反演结果可进一步提高预报廓线精度.
基金supported by the National Program on Key Basic Research Projects of China(Grant Nos.2010CB951604 and 2010CB28402)
文摘A new static microwave sounding unit (MSU) channel 4 weighting function is obtained from using Coupled Model Inter-comparison Project, Phase 5 (CMIP5) historical multimodel simulations as inputs into the fast Radiative Transfer Model for TOVS (RTTOV v10). For the same CMIP5 model simulations, it is demonstrated that the computed MSU channel 4 brightness temperature (T4) trends in the lower stratosphere over both the globe and the tropics using the proposed weighting function are equivalent to those calculated by RTTOV, but show more cooling than those computed using the traditional UAH (University of Alabama at Huntsville) or RSS (Remote Sensing Systems in Santa Rosa, California) static weighting functions. The new static weighting function not only reduces the computational cost, but also reveals reasons why trends using a radiative transfer model are different from those using a traditional static weighting function. This study also shows that CMIP5 model simulated T4 trends using the traditional UAH or RSS static weighting functions show less cooling than satellite observations over the globe and the tropics. Although not completely removed, this difference can be reduced using the proposed weighting function to some extent, especially over the tropics. This work aims to explore the reasons for the trend differences and to see to what extent they are related to the inaccurate weighting functions. This would also help distinguish other sources for trend errors and thus better understand the climate change in the lower stratosphere.
文摘为了定量评估对数正态谱分布假设对水云光学厚度(COT)与有效粒子半径(Re)反演的影响,利用欧洲中期数值天气预报中心建立的RTTOV(Radiative Transfer for TIROS Operational Vertical Sounder)模式,对比模拟了基于对数正态谱和修正Gamma谱两种云滴谱分布下FY-4A/AGRI(Advanced Geosynchronous Radiation Imager)的第2、5通道液态水云的反射率,分析了这两个谱分布假设条件下水云反射率随COT以及Re的变化特征。在此基础上,建立了两种谱分布条件下的COT和Re查算表,并基于2020年夏季的一个初生对流云个例,定量分析了云滴谱分布类型对云参数反演结果的影响。结果表明,在第2通道,两个云滴谱类型假设下计算的反射率仅有0.1%~2%的差异,但在第5通道,采用修正Gamma云滴谱计算的反射率比采用对数正态云滴谱计算的反射率低10%~20%。反演结果表明,采用对数正态云滴谱反演的有效粒子半径Re比采用修正Gamma云滴谱反演的Re整体偏大,前者反演的Re集中在15~35μm,而后者反演的Re集中在10~30μm。采用两种云滴谱反演的COT的空间一致性良好,相差-2%~5%。
基金supported jointly by the Major Special Projects of the Information System Bureau,the Special Proget of Earth Observation with High Resolution(Grant No.GFZX0402180102)the National Natural Science Foundation of China(Grant No.U1533131)
文摘This study simulated FY-2 D satellite infrared brightness images based on the WRF and RTTOV models. The effects of prediction errors in WRF micro-and macroscale cloud variables on FY-2 D infrared brightness temperature accuracy were analyzed. The principle findings were as follows. In the T+0–48 h simulation time, the root mean square errors of the simulated brightness temperatures were within the range 10–27 K, i.e., better than the range of 20–40 K achieved previously. In the T+0–24 h simulation time, the correlation coefficients between the simulated and measured brightness temperatures for all four channels were >0.5. The simulation performance of water channel IR3 was stable and the best. The four types of cloud microphysical scheme considered all showed that the simulated values of brightness temperature in clouds were too high and that the distributions of cloud systems were incomplete, especially in typhoon areas. The performance of the THOM scheme was considered best, followed in descending order by the WSM6, WDM6, and LIN schemes. Compared with observed values, the maximum deviation appeared in the range 253–273 K for all schemes. On the microscale, the snow water mixing ratio of the THOM scheme was much bigger than that of the other schemes. Improving the production efficiency or increasing the availability of solid water in the cloud microphysical scheme would provide slight benefit for brightness temperature simulations. On the macroscale, the cloud amount obtained by the scheme used in this study was small. Improving the diagnostic scheme for cloud amount, especially high-level cloud, could improve the accuracy of brightness temperature simulations. These results could provide an intuitive reference for forecasters and constitute technical support for the creation of simulated brightness temperature images for the FY-4 satellite.