Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing syste...Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.展开更多
Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequen...Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequency analysis and information theorem is proposed.Firstly, the meaning of HOTFE is defined, and then its validity is testified by numericalsimulation. In the end vibration data from rotors are analyzed by HOTFE. The results demonstratethat it can indeed identify the early rub-impact chaotic behavior in rotors and also is simpler tocalculate than previous methods.展开更多
With the establishment of the nonlinear coupled lateral and torsion vibrationequations of rub-impact Jeffcott rotor and through numerical simulations, the influences on lateraland torsion vibration behavior by rotor-t...With the establishment of the nonlinear coupled lateral and torsion vibrationequations of rub-impact Jeffcott rotor and through numerical simulations, the influences on lateraland torsion vibration behavior by rotor-to-stator clearance are analyzed, which prove that there isstrong impact on coupled lateral and torsion vibration behavior. Smaller the clearance is, morecomplex the motion of rotor is. When the clearance is larger, the frequency spectrum of rub-impactrotor is mainly composed of 1/2X, 1/3X and 1/4X components. With the decrease of clearance,quasi-periodic and chaotic motions will be present. Under different clearances, the bifurcationdiagrams of lateral and torsion vibrations can be divided into rub-free zone, rub-light zone andthree complex motion zones in which the motion trend of lateral vibration is similar to that of thetorsion vibration. Compared with the lateral vibration, the torsion vibration is of more motionforms and more abundant frequency components in amplitude spectrum.展开更多
Based on the theory of modal acoustic emission(AE),when the convolutional neural network(CNN)is used to identify rotor rub-impact faults,the training data has a small sample size,and the AE sound segment belongs to a ...Based on the theory of modal acoustic emission(AE),when the convolutional neural network(CNN)is used to identify rotor rub-impact faults,the training data has a small sample size,and the AE sound segment belongs to a single channel signal with less pixel-level information and strong local correlation.Due to the convolutional pooling operations of CNN,coarse-grained and edge information are lost,and the top-level information dimension in CNN network is low,which can easily lead to overfitting.To solve the above problems,we first propose the use of sound spectrograms and their differential features to construct multi-channel image input features suitable for CNN and fully exploit the intrinsic characteristics of the sound spectra.Then,the traditional CNN network structure is improved,and the outputs of all convolutional layers are connected as one layer constitutes a fused feature that contains information at each layer,and is input into the network’s fully connected layer for classification and identification.Experiments indicate that the improved CNN recognition algorithm has significantly improved recognition rate compared with CNN and dynamical neural network(DNN)algorithms.展开更多
Considering the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force, a dynamical model of rub-impact rotor system is established, then the nonlinear dynamical behavior is studied by num...Considering the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force, a dynamical model of rub-impact rotor system is established, then the nonlinear dynamical behavior is studied by numerical analysis method. The effect of rotation speed, nonlinear stiffitess ratio and speed effect factor on brifurcation and chaotic behavior for rub-impact rotor system is comprehensively analyzed. The analysis results show that the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force on the dynamical behavior of the rotor system has close relation with rotation speed. The chaotic behavior exists in a wider parameter region, and the chaotic evolution rule is more complicated. The research provides a reliable theory basis and reference for diagnosing some faults of the rotor system.展开更多
Intermittent rub-impact, during which the contact between rotor and stator is characterized by a ‘‘bouncing" or intermittent type of behavior, is one of the most common rubbing forms in rotating machinery. When the...Intermittent rub-impact, during which the contact between rotor and stator is characterized by a ‘‘bouncing" or intermittent type of behavior, is one of the most common rubbing forms in rotating machinery. When the intermittent rub-impact occurs, the non-smooth constraint, which is the phenomenon that the system stiffness changes with respect to the state of contact and noncontact, will appear. The paper aims at discovering the possible effects of the non-smooth constraint on the flexible rotor's modal characteristics by theoretical and experimental methods. The qualitative description for non-smooth constraint is given for the intermittent rub-impact process, and the dynamic modeling for a rotor system with non-smooth constraint is carried out. Meanwhile, the analysis method is developed by Floquet theory and Hill's method to obtain the rotor's modal characteristics. The results reveal that the non-smooth constraint produced by the intermittent rubimpact will increase the modal frequencies and critical speeds of the rotor system significantly.Due to the time-varying features of the constraint stiffness, the modal frequencies for the intermittent rub-impact rotor present fluctuant changes with the increase of rotation speed, which is different from the general linear rotor system. The non-smooth constraint is possible to lead the rotor's instability, and the rotor's instable regions can be expanded significantly for the increase of average constraint stiffness, constraint amplitude and contact time ratio. Non-smooth constraint could also expand the resonance speed and resonance sideband of the rotor system, which sometimes results in amplitude jump phenomenon.展开更多
This paper aims to gain insight into the nonlinear modal characteristics and the possible influence of the modes on the responses for the practical dual-rotor system with rub-impact in aero-engine.The finite solid ele...This paper aims to gain insight into the nonlinear modal characteristics and the possible influence of the modes on the responses for the practical dual-rotor system with rub-impact in aero-engine.The finite solid element method combined with a constraint stiffness model produced by rub-impact is introduced to build the governing equation of the complicated nonlinear dual-rotor system.In order to deal with the efficiency and numerical divergence in the process of solving the nonlinear modes of this large-scale nonlinear system,an analysis strategy is proposed by integrating a two-layer reduction technique into the harmonic balance method.The effectiveness of the analysis strategy is validated by applying to a simple rotor system,which can easily obtain the theoretical result.Based on the modeling method and analysis strategy,the modal characteristics of an aero-engine dual-rotor system with rub-impact are revealed.The results show that the modal frequency of the dual-rotor system increases when rub-impact occurs and has the feature of interval,which allows us to obtain the critical speeds of the rubbing system by traditional Campbell diagram.The rotation direction is an important factor since it can not only affect the gyroscopic effect but also change the friction effect of the rub-impact.It is found that the modal frequencies of the counter-rotation dual-rotor are less than those of co-rotation condition.More importantly,the forward modes of the counter-rotation dual-rotor may be instable when rub-impact occurs at a certain rotor,while the corresponding modes under the co-rotation condition are always stable.Furthermore,by analyzing the rubbing response of the dual-rotor,it is found that the modal characteristics have an important influence on rotor’s response.The instable forward modes existing in the counter-rotation dual-rotor may lead to the divergence of the response when passing the corresponding critical speed.展开更多
Nonlinear vibration characteristics of a rub impact Jeffcott rotor are investigated. The system is two dimensional, nonlinear, and periodic. Fourier series analysis and the Floquet theory are used to perform qualitat...Nonlinear vibration characteristics of a rub impact Jeffcott rotor are investigated. The system is two dimensional, nonlinear, and periodic. Fourier series analysis and the Floquet theory are used to perform qualitative global analysis of the dynamical system. The governing ordinary differential equations are also integrated using a numerical method to give the quantitative result. This preliminary study revealed the chaotic feature of the system. After the rub impact, as the rotating speed is increased three kinds of routes to chaos are found, that is, from a stable periodic motion through period doubling bifurcation, grazing bifurcation, and quasi periodic bifurcation to chaos.展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB026000)
文摘Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.
文摘Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequency analysis and information theorem is proposed.Firstly, the meaning of HOTFE is defined, and then its validity is testified by numericalsimulation. In the end vibration data from rotors are analyzed by HOTFE. The results demonstratethat it can indeed identify the early rub-impact chaotic behavior in rotors and also is simpler tocalculate than previous methods.
基金This project is supported by State Power Company Science and Technology Foundation of China(No.SP11-2002-02-28).
文摘With the establishment of the nonlinear coupled lateral and torsion vibrationequations of rub-impact Jeffcott rotor and through numerical simulations, the influences on lateraland torsion vibration behavior by rotor-to-stator clearance are analyzed, which prove that there isstrong impact on coupled lateral and torsion vibration behavior. Smaller the clearance is, morecomplex the motion of rotor is. When the clearance is larger, the frequency spectrum of rub-impactrotor is mainly composed of 1/2X, 1/3X and 1/4X components. With the decrease of clearance,quasi-periodic and chaotic motions will be present. Under different clearances, the bifurcationdiagrams of lateral and torsion vibrations can be divided into rub-free zone, rub-light zone andthree complex motion zones in which the motion trend of lateral vibration is similar to that of thetorsion vibration. Compared with the lateral vibration, the torsion vibration is of more motionforms and more abundant frequency components in amplitude spectrum.
基金The authors would like to acknowledge the Six Talent Peaks Project in Jiangsu Province[XCL-CXTD-007]China Postdoctoral Science Foundation[2018M630559]for their financial support in this project。
文摘Based on the theory of modal acoustic emission(AE),when the convolutional neural network(CNN)is used to identify rotor rub-impact faults,the training data has a small sample size,and the AE sound segment belongs to a single channel signal with less pixel-level information and strong local correlation.Due to the convolutional pooling operations of CNN,coarse-grained and edge information are lost,and the top-level information dimension in CNN network is low,which can easily lead to overfitting.To solve the above problems,we first propose the use of sound spectrograms and their differential features to construct multi-channel image input features suitable for CNN and fully exploit the intrinsic characteristics of the sound spectra.Then,the traditional CNN network structure is improved,and the outputs of all convolutional layers are connected as one layer constitutes a fused feature that contains information at each layer,and is input into the network’s fully connected layer for classification and identification.Experiments indicate that the improved CNN recognition algorithm has significantly improved recognition rate compared with CNN and dynamical neural network(DNN)algorithms.
文摘Considering the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force, a dynamical model of rub-impact rotor system is established, then the nonlinear dynamical behavior is studied by numerical analysis method. The effect of rotation speed, nonlinear stiffitess ratio and speed effect factor on brifurcation and chaotic behavior for rub-impact rotor system is comprehensively analyzed. The analysis results show that the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force on the dynamical behavior of the rotor system has close relation with rotation speed. The chaotic behavior exists in a wider parameter region, and the chaotic evolution rule is more complicated. The research provides a reliable theory basis and reference for diagnosing some faults of the rotor system.
基金the financial support from the National Natural Science Foundation of China(Nos.11772022,51575022 and 51475021)
文摘Intermittent rub-impact, during which the contact between rotor and stator is characterized by a ‘‘bouncing" or intermittent type of behavior, is one of the most common rubbing forms in rotating machinery. When the intermittent rub-impact occurs, the non-smooth constraint, which is the phenomenon that the system stiffness changes with respect to the state of contact and noncontact, will appear. The paper aims at discovering the possible effects of the non-smooth constraint on the flexible rotor's modal characteristics by theoretical and experimental methods. The qualitative description for non-smooth constraint is given for the intermittent rub-impact process, and the dynamic modeling for a rotor system with non-smooth constraint is carried out. Meanwhile, the analysis method is developed by Floquet theory and Hill's method to obtain the rotor's modal characteristics. The results reveal that the non-smooth constraint produced by the intermittent rubimpact will increase the modal frequencies and critical speeds of the rotor system significantly.Due to the time-varying features of the constraint stiffness, the modal frequencies for the intermittent rub-impact rotor present fluctuant changes with the increase of rotation speed, which is different from the general linear rotor system. The non-smooth constraint is possible to lead the rotor's instability, and the rotor's instable regions can be expanded significantly for the increase of average constraint stiffness, constraint amplitude and contact time ratio. Non-smooth constraint could also expand the resonance speed and resonance sideband of the rotor system, which sometimes results in amplitude jump phenomenon.
基金support from the National Natural Science Foundation of China(Grant No.52005252)the Fundamental Research Funds for the Central Universities,China(Grant No.NT2020018)the National Science and Technology Major Project(2017-IV-0008-0045).
文摘This paper aims to gain insight into the nonlinear modal characteristics and the possible influence of the modes on the responses for the practical dual-rotor system with rub-impact in aero-engine.The finite solid element method combined with a constraint stiffness model produced by rub-impact is introduced to build the governing equation of the complicated nonlinear dual-rotor system.In order to deal with the efficiency and numerical divergence in the process of solving the nonlinear modes of this large-scale nonlinear system,an analysis strategy is proposed by integrating a two-layer reduction technique into the harmonic balance method.The effectiveness of the analysis strategy is validated by applying to a simple rotor system,which can easily obtain the theoretical result.Based on the modeling method and analysis strategy,the modal characteristics of an aero-engine dual-rotor system with rub-impact are revealed.The results show that the modal frequency of the dual-rotor system increases when rub-impact occurs and has the feature of interval,which allows us to obtain the critical speeds of the rubbing system by traditional Campbell diagram.The rotation direction is an important factor since it can not only affect the gyroscopic effect but also change the friction effect of the rub-impact.It is found that the modal frequencies of the counter-rotation dual-rotor are less than those of co-rotation condition.More importantly,the forward modes of the counter-rotation dual-rotor may be instable when rub-impact occurs at a certain rotor,while the corresponding modes under the co-rotation condition are always stable.Furthermore,by analyzing the rubbing response of the dual-rotor,it is found that the modal characteristics have an important influence on rotor’s response.The instable forward modes existing in the counter-rotation dual-rotor may lead to the divergence of the response when passing the corresponding critical speed.
文摘Nonlinear vibration characteristics of a rub impact Jeffcott rotor are investigated. The system is two dimensional, nonlinear, and periodic. Fourier series analysis and the Floquet theory are used to perform qualitative global analysis of the dynamical system. The governing ordinary differential equations are also integrated using a numerical method to give the quantitative result. This preliminary study revealed the chaotic feature of the system. After the rub impact, as the rotating speed is increased three kinds of routes to chaos are found, that is, from a stable periodic motion through period doubling bifurcation, grazing bifurcation, and quasi periodic bifurcation to chaos.