期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Houshiheisan and its components promote axon regeneration after ischemic brain injury 被引量:14
1
作者 Yue Lu Flora Hsiang +5 位作者 Jia-Hui Chang Xiao-Quan Yao Hui Zhao Hai-Yan Zou Lei Wang Qiu-Xia Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1195-1203,共9页
Houshiheisan,a classic prescription in traditional Chinese medicine,contains Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari,Radix Platycodonis,Rhizoma Atractylodis m... Houshiheisan,a classic prescription in traditional Chinese medicine,contains Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari,Radix Platycodonis,Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis,Radix et Rhizoma Ginseng,Radix Scutellariae and Concha Ostreae.According to traditional Chinese medicine theory,Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari and Radix Platycodonis are wind-dispelling drugs;Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis and Radix et Rhizoma Ginseng are deficiency-nourishing drugs.A large number of randomized controlled trials have shown that Houshiheisan is effective in treating stroke,but its mechanism of action is unknown.Axonal remodeling is an important mechanism in neural protection and regeneration.Therefore,this study explored the effect and mechanism of action of Houshiheisan on the repair of axons after cerebral ischemia.Rat models of focal cerebral ischemia were established by ligating the right middle cerebral artery.At 6 hours after model establishment,rats were intragastrically administered 10.5 g/kg Houshiheisan or 7.7 g/kg wind-dispelling drug or 2.59 g/kg deficiency-nourishing drug.These medicines were intragastrically administered as above every 24 hours for 7 consecutive days.Houshiheisan,and its wind-dispelling and deficiency-nourishing components reduced the neurological deficit score and ameliorated axon and neuron lesions after cerebral ischemia.Furthermore,Houshiheisan,and its wind-dispelling and deficiency-nourishing components decreased the expression of proteins that inhibit axonal remodeling:amyloid precursor protein,neurite outgrowth inhibitor protein A(Nogo-A),Rho family small GTPase A(Rho A) and Rho-associated kinase 2(Rock2),and increased the expression of growth associated protein-43,microtubule-associated protein-2,netrin-1,Ras-related C3 botulinum toxin substrate 1(Rac1) and cell division cycle 42(Cdc42).The effect of Houshiheisan was stronger than wind-dispelling drugs or deficiency-nourishing drugs alone.In conclusion,Houshiheisan,and wind-dispelling and deficiency-nourishing drugs promote the repair of axons and nerve regeneration after cerebral ischemia through Nogo-A/Rho A/Rock2 and Netrin-1/Rac1/Cdc42 signaling pathways.These effects are strongest with Houshiheisan. 展开更多
关键词 nerve regeneration Houshiheisan wind-dispelling drug deficiency-nourishing drug cerebral ischemia Nogo-A/Rho A/Rock2 signaling pathway axonal recovery Netrin-1/rac1/Cdc42 signaling pathway neuroprotection neural regeneration
下载PDF
Spermine protects intestinal barrier integrity through ras-related C3 botulinum toxin substrate 1/phospholipase C-γ1 signaling pathway in piglets 被引量:2
2
作者 Guangmang Liu Xiaomei Xu +6 位作者 Caimei Wu Gang Jia Hua Zhao Xiaoling Chen Gang Tian Jingyi Cai Jing Wang 《Animal Nutrition》 SCIE CSCD 2022年第1期135-143,共9页
Weaning stress can cause tight junctions damage and intestinal permeability enhancement,which leads to intestinal imbalance and growth retardation,thereby causing damage to piglet growth and development.Spermine can r... Weaning stress can cause tight junctions damage and intestinal permeability enhancement,which leads to intestinal imbalance and growth retardation,thereby causing damage to piglet growth and development.Spermine can reduce stress.However,the mechanism of spermine modulating the intestinal integrity in pigs remains largely unknown.This study aims to examine whether spermine protects the intestinal barrier integrity of piglets through ras-related C3 botulinum toxin substrate 1(Rac1)/phospholipase C-g1(PLC-γ1)signaling pathway.In vivo,80 piglets were categorised into 4 control groups and 4 spermine groups(10 piglets per group).The piglets were fed with normal saline or spermine at 0.4 mmol/kg BW for 7 h and 3,6 and 9 d.In vitro,we investigated whether spermine protects the intestinal barrier after a tumor necrosis factor a(TNF-a)challenge through Rac1/PLC-γ1 signaling pathway.The in vivo study found that spermine supplementation increased tight junction protein mRNA levels and Rac1/PLC-γ1 signaling pathway gene expression in the jejunum of piglets.The serum D-lactate content was significantly decreased after spermine supplementation(P<0.05).The in vitro study found that 0.1 mmol/L spermine increased the levels of tight junction protein expression,Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance,and decreased paracellular permeability(P<0.05).Further experiments demonstrated that spermine supplementation enhanced the levels of tight junction protein expression,Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance,and decreased paracellular permeability compared with the NSC-23766 and U73122 treatment with spermine after TNF-a challenge(P<0.05).Collectively,spermine protects intestinal barrier integrity through Rac1/PLC-γ1 signaling pathway in piglets. 展开更多
关键词 SPERMINE Intestinal barrier rac1/PLC-γ1 signaling pathway Intestinal integrity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部