This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in lin...This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.展开更多
Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribut...Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.展开更多
现代谱估计方法能够反演基于几何绕射理论(geometric theory of diffraction,GTD)的模型参数,但不能处理非均匀不完备的雷达散射截面(radar cross section,RCS)数据。此外,通过暗室测量获取完备的RCS数据也需要较大的时空开销。针对上...现代谱估计方法能够反演基于几何绕射理论(geometric theory of diffraction,GTD)的模型参数,但不能处理非均匀不完备的雷达散射截面(radar cross section,RCS)数据。此外,通过暗室测量获取完备的RCS数据也需要较大的时空开销。针对上述问题,提出一种基于迭代加权最小二乘(iteratively reweighed least squares,IRLS)的跳频模式下GTD散射参数提取和RCS重构方法。该方法将稀疏重构理论与GTD散射模型相结合,能够在RCS数据非均匀不完备的条件下反演散射参数和实现RCS重构。仿真数据和电磁计算数据用于验证所提方法的有效性,实验结果表明该方法对降低暗室步进频率RCS的测量成本和扩增雷达RCS数据具有重要意义。展开更多
Taking into account the influences of scatterer geometrical shapes on induced currents, an algorithm, termed the sparse-matrix method (SMM), is proposed to calculate radar cross section (RCS) of aircraft configura...Taking into account the influences of scatterer geometrical shapes on induced currents, an algorithm, termed the sparse-matrix method (SMM), is proposed to calculate radar cross section (RCS) of aircraft configuration. Based on the geometrical characteristics and the method of moment (MOM), the SMM points out that the strong current coupling zone could be predefined according to the shape of scatterers. Two geometrical parameters, the surface curvature and the electrical space between the field position and source position, are deducted to distinguish the dominant current coupling. Then the strong current coupling is computed to construct an impedance matrix having sparse nature, which is solved to compute RCS. The efficiency and feasibility of the SMM are demonstrated by computing electromagnetic scattering of some kinds of shapes such as a cone-sphere with a gap, a bi-arc column and a stealth aircraft configuration. The numerical results show that: (1) the accuracy of SMM is satisfied, as compared with MOM, and the computational time it spends is only about 8% of the MOM; (2) with the electrical space considered, making another allowance for the surface curvature can reduce the computation time by 9.5%.展开更多
高精度雷达散射截面(RCS)测量对背景环境具有较高要求,当背景环境存在较强干扰时,通过背景矢量对消难以消除杂波影响。提出基于成像提取的高精度RCS测量方法,从背景杂波中分离和提取出目标的散射信号,从而提高了测量的精度。首先推导了...高精度雷达散射截面(RCS)测量对背景环境具有较高要求,当背景环境存在较强干扰时,通过背景矢量对消难以消除杂波影响。提出基于成像提取的高精度RCS测量方法,从背景杂波中分离和提取出目标的散射信号,从而提高了测量的精度。首先推导了像与RCS的数学关系,然后利用转台模式下的测量回波进行成像处理,得到目标区域的二维像;从成像区域中提取目标的二维像,通过波谱变换和定标获得目标的RCS。仿真结果表明,该方法对于具有干扰情况下的RCS测量,可以改善3~5 d B的测试精度,并且能够对弱散射目标进行测量。实验结果表明了成像提取方法的有效性和准确性。展开更多
文摘This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.
基金supported by the National Natural Science Foundation of China (Grant No.90305026)
文摘Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.
文摘现代谱估计方法能够反演基于几何绕射理论(geometric theory of diffraction,GTD)的模型参数,但不能处理非均匀不完备的雷达散射截面(radar cross section,RCS)数据。此外,通过暗室测量获取完备的RCS数据也需要较大的时空开销。针对上述问题,提出一种基于迭代加权最小二乘(iteratively reweighed least squares,IRLS)的跳频模式下GTD散射参数提取和RCS重构方法。该方法将稀疏重构理论与GTD散射模型相结合,能够在RCS数据非均匀不完备的条件下反演散射参数和实现RCS重构。仿真数据和电磁计算数据用于验证所提方法的有效性,实验结果表明该方法对降低暗室步进频率RCS的测量成本和扩增雷达RCS数据具有重要意义。
基金National Natural Science Foundation of China (90205020)
文摘Taking into account the influences of scatterer geometrical shapes on induced currents, an algorithm, termed the sparse-matrix method (SMM), is proposed to calculate radar cross section (RCS) of aircraft configuration. Based on the geometrical characteristics and the method of moment (MOM), the SMM points out that the strong current coupling zone could be predefined according to the shape of scatterers. Two geometrical parameters, the surface curvature and the electrical space between the field position and source position, are deducted to distinguish the dominant current coupling. Then the strong current coupling is computed to construct an impedance matrix having sparse nature, which is solved to compute RCS. The efficiency and feasibility of the SMM are demonstrated by computing electromagnetic scattering of some kinds of shapes such as a cone-sphere with a gap, a bi-arc column and a stealth aircraft configuration. The numerical results show that: (1) the accuracy of SMM is satisfied, as compared with MOM, and the computational time it spends is only about 8% of the MOM; (2) with the electrical space considered, making another allowance for the surface curvature can reduce the computation time by 9.5%.
文摘高精度雷达散射截面(RCS)测量对背景环境具有较高要求,当背景环境存在较强干扰时,通过背景矢量对消难以消除杂波影响。提出基于成像提取的高精度RCS测量方法,从背景杂波中分离和提取出目标的散射信号,从而提高了测量的精度。首先推导了像与RCS的数学关系,然后利用转台模式下的测量回波进行成像处理,得到目标区域的二维像;从成像区域中提取目标的二维像,通过波谱变换和定标获得目标的RCS。仿真结果表明,该方法对于具有干扰情况下的RCS测量,可以改善3~5 d B的测试精度,并且能够对弱散射目标进行测量。实验结果表明了成像提取方法的有效性和准确性。