Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitte...Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.展开更多
This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t...This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.展开更多
针对低信噪比(signal to noise ratio,SNR)低截获概率(low probability of intercept,LPI)雷达脉内波形识别准确率低的问题,提出一种基于时频分析、压缩激励(squeeze excitation,SE)和ResNeXt网络的雷达辐射源信号识别方法。首先通过Cho...针对低信噪比(signal to noise ratio,SNR)低截获概率(low probability of intercept,LPI)雷达脉内波形识别准确率低的问题,提出一种基于时频分析、压缩激励(squeeze excitation,SE)和ResNeXt网络的雷达辐射源信号识别方法。首先通过Choi-Williams分布(Choi-Williams distribution,CWD)获得雷达时域信号的二维时频图像(time-frequency image,TFI);然后进行TFI预处理降低噪声干扰和频率维的位置分布差异,以适应深度学习网络输入;最后在ResNeXt基础上加入扩张卷积和SE结构提取TFI特征,实现雷达辐射源分类。实验结果表明,SNR低至-8 dB时,该方法对12类常见LPI雷达波形的整体识别准确率依然能达到98.08%。展开更多
With the increase of complexity of electromagnetic environment and continuous appearance of advanced system radars,signals received by radar reconnaissance receivers become even more intensive and complex.Therefore,tr...With the increase of complexity of electromagnetic environment and continuous appearance of advanced system radars,signals received by radar reconnaissance receivers become even more intensive and complex.Therefore,traditional radar sorting methods based on neural network algorithms and support vector machine(SVM) cannot process them effectively.Aiming at solving this problem,a novel radar signal sorting method based on the cloud model theory and the geometric covering algorithm is proposed.By applying the geometric covering algorithm to divide input signals into different covering domains based on their distribution characteristics,the method can overcome a typical problem that it is easy for traditional sorting algorithms to fall into the local extrema due to the use of complex nonlinear equation to describe input signals.The method uses the cloud model to describe the membership degree between signals to be sorted and their covering domains,thus it avoids the disadvantage that traditional sorting methods based on hard clustering cannot deinterleave the signal samples with overlapped parameters. Experimental results show that the presented method can effectively sort advanced system radar signals with overlapped parameters in complex electromagnetic environment.展开更多
To cope with the problem of emitter identification caused by the radar words' uncertainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed...To cope with the problem of emitter identification caused by the radar words' uncertainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed translation schema(SSDTS). This method, which is deduced from the syntactic modeling of multi-function radars, considers the probabilities of radar phrases appearance in different radar modes as well as the probabilities of radar word errors occurrence in different radar phrases. It concludes that the proposed method can not only correct the defective radar words by using the stochastic translation schema, but also identify the real radar phrases and working modes of measured emitters concurrently. Furthermore, a number of simulations are presented to demonstrate the identification capability and adaptability of the SSDTS algorithm.The results show that even under the condition of the defective radar words distorted by noise,the proposed algorithm can infer the phrases, work modes and types of measured emitters correctly.展开更多
基金TheNationalDefenceFoundation (No .NEWL5 14 35QT2 2 0 4 0 1) ,theDoctoralInnovationFoundationofSWJTU ,andtheMainTeacherSponsorProgramoftheMinistryofEducationofChina (No .6 5 ,2 0 0 0 )
文摘Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.
文摘This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.
文摘针对低信噪比(signal to noise ratio,SNR)低截获概率(low probability of intercept,LPI)雷达脉内波形识别准确率低的问题,提出一种基于时频分析、压缩激励(squeeze excitation,SE)和ResNeXt网络的雷达辐射源信号识别方法。首先通过Choi-Williams分布(Choi-Williams distribution,CWD)获得雷达时域信号的二维时频图像(time-frequency image,TFI);然后进行TFI预处理降低噪声干扰和频率维的位置分布差异,以适应深度学习网络输入;最后在ResNeXt基础上加入扩张卷积和SE结构提取TFI特征,实现雷达辐射源分类。实验结果表明,SNR低至-8 dB时,该方法对12类常见LPI雷达波形的整体识别准确率依然能达到98.08%。
基金Supported by the National Natural Science Foundation of China(61240007)the Fundamental Re-search Funds for the Central Universities(HEUCF130805)+3 种基金the Key Science and Technology Project of Harbin(2011AA2CG007-2)the Chinese Postdoctoral Science Foundation Funded Projects(20080430903)the Chinese Postdoctoral Science Foundation Specially Funded Projects(200902411)the Heilongjiang Post-doctoral Research Foundation(LBH-Q10140,LBH-Q12122,LBH-Q12136)
文摘With the increase of complexity of electromagnetic environment and continuous appearance of advanced system radars,signals received by radar reconnaissance receivers become even more intensive and complex.Therefore,traditional radar sorting methods based on neural network algorithms and support vector machine(SVM) cannot process them effectively.Aiming at solving this problem,a novel radar signal sorting method based on the cloud model theory and the geometric covering algorithm is proposed.By applying the geometric covering algorithm to divide input signals into different covering domains based on their distribution characteristics,the method can overcome a typical problem that it is easy for traditional sorting algorithms to fall into the local extrema due to the use of complex nonlinear equation to describe input signals.The method uses the cloud model to describe the membership degree between signals to be sorted and their covering domains,thus it avoids the disadvantage that traditional sorting methods based on hard clustering cannot deinterleave the signal samples with overlapped parameters. Experimental results show that the presented method can effectively sort advanced system radar signals with overlapped parameters in complex electromagnetic environment.
基金supported by the National Natural Science Foundation of China (No. 61002026)
文摘To cope with the problem of emitter identification caused by the radar words' uncertainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed translation schema(SSDTS). This method, which is deduced from the syntactic modeling of multi-function radars, considers the probabilities of radar phrases appearance in different radar modes as well as the probabilities of radar word errors occurrence in different radar phrases. It concludes that the proposed method can not only correct the defective radar words by using the stochastic translation schema, but also identify the real radar phrases and working modes of measured emitters concurrently. Furthermore, a number of simulations are presented to demonstrate the identification capability and adaptability of the SSDTS algorithm.The results show that even under the condition of the defective radar words distorted by noise,the proposed algorithm can infer the phrases, work modes and types of measured emitters correctly.