This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in lin...This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.展开更多
The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurem...The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.展开更多
Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribut...Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.展开更多
Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative....Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative.Thus,the RCS of a naval ship has become a very important design factor for achieving surprise,initiative,and survivability.Consequently,accurate RCS determination and RCS reduction are of extreme importance for a naval ship.The purpose of this paper is to provide an understanding of the theoretical background and engineering approach to deal with RCS prediction and reduction for naval ships.The importance of RCS,radar fundamentals,RCS basics,RCS prediction methods,and RCS reduction methods for naval ships is also discussed.展开更多
The emulsification of crude oil is caused by the oil flowing into the water,resulting in the increase of oil film tension,viscosity,water content,and volume,which brings great harm to the marine ecological environment...The emulsification of crude oil is caused by the oil flowing into the water,resulting in the increase of oil film tension,viscosity,water content,and volume,which brings great harm to the marine ecological environment and difficulties for the cleanup of marine emergency equipment.The realization observation of emulsification crude oil will increase the response speed of marine emergency response.Therefore,we set up crude oil emulsification samples to study the physical property in laboratory and conducted radar measurements at different incidence angles in outdoor.The radar is C band in resolution of 0.7 m by 0.7 m.A fully polarimetric scatterometer(HH,VV,and VH/HV)is mounted at 1.66 m(minimum altitude)height at an incidence angle between 35°and 60°.An asphalt content of less than 3%crude oil and the filtered seawater were used to the outdoor emulsification scattering experiment.The measurement results are as follows.The water content can be used to describe the process of emulsification and it is easy to measure.Wind speed,asphalt content,seawater temperature,and photo-oxidation affect the emulsifying process of crude oil,and affects the normalized radar cross section(NRCS)of oil film but wind is not the dominant factor.It is the first time to find that the emulsification of crude oil results in an increase of NRCS.展开更多
A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial ...A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors(AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultrawideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-tofabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.展开更多
Aerospace structures can be approximately modeled as a combination of canonical structures such as cylinder,cone and ellipsoid.Thus the RCS estimation of such canonical structures is of prime interest.Furthermore meta...Aerospace structures can be approximately modeled as a combination of canonical structures such as cylinder,cone and ellipsoid.Thus the RCS estimation of such canonical structures is of prime interest.Furthermore metamaterials possess peculiar electromagnetic properties which can be useful in modifying the RCS of structures.This paper is aimed at calculating the RCS of an infinitely long PEC circular cylinder coated with one or two layers of metamaterial.The incident and scattered fields of coated cylinder are expressed in terms of series summation of Bessel and Hankel functions.The unknown coefficients of summation are obtained by applying appropriate boundary conditions.The computations are carried out for both principal polarizations.The computed results are validated against the numerical-based method of moments.Further,the variation of RCS of the metamaterial coated PEC cylinder with material parameters,frequency,aspect angle and polarization is analyzed.展开更多
A new method of calculating the radai cross section (RCS) for wing-body blended targets is presented and verified. The method utilizes a computer program for modeling targets' geometry in terms of small pieces. Th...A new method of calculating the radai cross section (RCS) for wing-body blended targets is presented and verified. The method utilizes a computer program for modeling targets' geometry in terms of small pieces. The calculation is based on physical optics approximation. Examples are given to show the validity of the method.展开更多
Radar Cross Section (RCS) is one of the most considerable parameters for ship stealth design. As modern ships are larger than their predecessors, RCS must be managed at each design stage for its reduction. For predict...Radar Cross Section (RCS) is one of the most considerable parameters for ship stealth design. As modern ships are larger than their predecessors, RCS must be managed at each design stage for its reduction. For predicting RCS of ship, Radar Cross Section Analysis Program (RACSAN) based on Kirchhoff approximation in high frequency range has been developed. This program can present RCS including multi-bounce effect in exterior and interior structure by combination of geometric optics (GO) and physical optics (PO) methods, coating effect by using Fresnel reflection coefficient, and response time pattern for detected target. In this paper, RCS calculations of ship model with above effects are simulated by using this developed program and RCS results are discussed.展开更多
The calculation formulas of monostatic radar cross-section (RCS) of arbitrary re-flectors with arbitrarily polarized plane-wave incidence are derived, where the spicular field isobtained by geometrical optics (GO) and...The calculation formulas of monostatic radar cross-section (RCS) of arbitrary re-flectors with arbitrarily polarized plane-wave incidence are derived, where the spicular field isobtained by geometrical optics (GO) and the edge-diffracted field is calculated by the method ofequivalent currents (MEC). Some typical calculated results are given by means of RCS spatialgraphs. For both horizontal and vertical polarizations, the theoretical results obtained in thispaper agree very well with the experimental results as well as the results from uniform theory ofdiffraction.展开更多
We develop an efficient method for polished metallic sphere’s scattering prediction in terahertz band when its frequency dispersion property is considered. By deducing scattering solution of the lossy metallic sphere...We develop an efficient method for polished metallic sphere’s scattering prediction in terahertz band when its frequency dispersion property is considered. By deducing scattering solution of the lossy metallic sphere, the radar cross section(RCS)of different metallic spheres is given at terahertz frequencies. The investigation of the RCS of polished metallic spheres shows the normalized RCS is always same to the metals’ normal incidence reflectivity when the sphere becomes electrically large. The metals which have high reflectivity(such as Al, Cu, Ag and Au) show that the corresponding RCS of the spheres is almost πa2 in terahertz band. The sphere’s RCS of the transition metal such as Fe begins to decrease obviously since the far infrared.展开更多
On the basis of the canard configuration a contour stealth design including chiefly the wing, the fuselage and their connection type is projected. The prime project of a blended wing body vehicle with canard is provid...On the basis of the canard configuration a contour stealth design including chiefly the wing, the fuselage and their connection type is projected. The prime project of a blended wing body vehicle with canard is provided and through the change of the fuselage head form and the different fin disposals, the radar cross section (RCS) is optimized. The average value of RCS and the value of RCS in the ± 45 ° front sector for different designs are illustrated. The model measurement proves that the project having a sharp head fuselage and 30 ° angle double fin has the minimum value of RCS. The wind tunnel test to the model with RCS optimized proved that the vehicle project has excellent aerodynamic characteristics such as high lift curve slope, up to 26° stalling angle, high lift / drag ratio equal to 8, and also has low RCS value in the front sector and in the lateral sector.展开更多
Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equ...Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equation, which solves the field by marching them along the paraxial direction. Numerical results show that a single wide-angle parabofic equation run can compute multi-object RCS efficiently for angles up to 45 ° . The method provides anew and efficient numerical method for computation electromagnetics.展开更多
It is well known that the incorrect results will be given using either the electric or magnetic field integral equation to calculate the radar cross section (RCS) of a closed body at the interior resonance. In this pa...It is well known that the incorrect results will be given using either the electric or magnetic field integral equation to calculate the radar cross section (RCS) of a closed body at the interior resonance. In this paper, an effective iterative technique is used to correct the calculated surface current density from the electric field integral equation. The radar cross section is computed for an infinite conducting circular cylinder at the interior resonance, and the obtained results are in good agreement with the analytical results. The backscattering cross section of an infinite triangular cylinder in the vicinity of a resonant frequency is also calculated. It is shown that the presence method is efficient and accurate.展开更多
In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deduc...In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.展开更多
A scheme of combing wave absorption and phase cancellation mechanisms for widening radar cross section(RCS)reduction band is proposed.An absorptive coding metasurface implementing this scheme is derived from tradition...A scheme of combing wave absorption and phase cancellation mechanisms for widening radar cross section(RCS)reduction band is proposed.An absorptive coding metasurface implementing this scheme is derived from traditional circuit analog absorber(CAA)composed of resistive ring elements which characterize dual resonances behavior.It is constructed by replacing some of the CAA elements by another kind of resistive ring elements which is singly resonant in between the original two resonant bands and has reflection phase opposite to that of the original elements at resonance.Hence the developed metasurface achieves an improved low-RCS band over which the lower and higher sub-bands are mainly contributed by wave absorption mainly while the middle sub-band is formed by joint effect of wave absorption and antiphase cancellation mechanisms.The polarization-independent wideband RCS reduction property of the metasurface is validated by full-wave simulation results of a preliminary and an advanced design examples which employ the same element configuration but different element layout schemes as partitioned distribution and random coding.The advanced design also exhibits broadband bistatic low-RCS property and keeps a stable specular RCS reduction performance with regard to incident elevation angle up to 35◦.The advanced design is fabricated and the experimental results of the sample agrees qualitatively well with their simulated counterparts.The measured figure of merit(i.e.,low-RCS bandwidth ratio versus electrical thickness)of the sample is 40.572,which is superior to or comparable with those for most of other existing metasurface with compound RCS reduction mechanism.The proposed compound metasurface technique also features simple structure,light weight,low cost and easy fabrication compared with other techniques.This makes it promising in applications such as radar stealth and electromagnetic compatibility.展开更多
For stealth technology,in order to overcome the limitations of thin-layer plasma for electromagnetic waves attenuation and further broaden the radar cross-section(RCS)reduction(RCSR)band of the metasurface,the plasma-...For stealth technology,in order to overcome the limitations of thin-layer plasma for electromagnetic waves attenuation and further broaden the radar cross-section(RCS)reduction(RCSR)band of the metasurface,the plasma-based checkerboard metasurface composed of plasma and checkerboard metasurface is investigated to achieve better RCSR.We designed a checkerboard metasurface which can achieve abnormal reflection to reduce RCS and whose-10d B RCSR bandwidth is from 8.1 to 14.5 GHz,the RCSR principle of it lies in the backscattering cancellation,which depends on the phase difference of artificial magnetic conductor(AMC)units.The designed plasma-based checkerboard metasurface is a thin composite structure,including a checkerboard metasurface,a plasma layer,and an air gap which is between them.Full wave simulations confirm that the plasma-based checkerboard metasurface’s–10 dB RCS reduction bandwidth and RCS reduction amplitude,are both increased under different polarized waves compared with the only single plasma or the only metasurface.We also introduced the reason and mechanism of the interaction between plasma and the checkerboard metasurface to improve the RCSR effect in detail.As plasma-based checkerboard metasurface does not need the plasma to be too thick for plasma stealth,its application in practical scenarios is easier to implement.展开更多
The influence of theα-decay radionuclide layer(the energy ofα-particles are 5.45 Me V)on the radar cross section(RCS)of sphere objects was calculated under different radioactivities,frequencies,and sphere radii.When...The influence of theα-decay radionuclide layer(the energy ofα-particles are 5.45 Me V)on the radar cross section(RCS)of sphere objects was calculated under different radioactivities,frequencies,and sphere radii.When the sphere radius is smaller than 50 cm,the tendency of the electron densities of the plasma slab is to ascend first and then descend,and the typical maximum electron densities with a radioactivity of 10 Ci/cm2raises from 7.02×1010to 1.76×1011when the sphere radii increases from 10 to 300 cm.The average data of a normalized RCS of a sphere with radius of 12.5 cm,which is coated with a radionuclide layer with different radioactivities are-0.35,-0.50,-0.79 and-1.13 d B when the radioactivity is 1,2,5 and 10 Ci/cm2,respectively.展开更多
A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added in...A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added into received signal over certain frequency-width. With the MFH only the intensity of received composite signals needs to be measured. Both imaging situations of far field and near field are considered in details. Special restrictions about the MFH are also discussed and simulated by numerical computation. Examples of numerical simulation show that the method is effective, applicable and perspective.展开更多
文摘This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.
基金supported by the National Basic Research Program of China(973 Program)(2010CB731905)
文摘The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.
基金supported by the National Natural Science Foundation of China (Grant No.90305026)
文摘Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.
基金Supported by Program for New Century Excellent Talents in University under Grant No.NCET-07-0230the "111" Project under Grant No.B07019 at Harbin Engineering University
文摘Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative.Thus,the RCS of a naval ship has become a very important design factor for achieving surprise,initiative,and survivability.Consequently,accurate RCS determination and RCS reduction are of extreme importance for a naval ship.The purpose of this paper is to provide an understanding of the theoretical background and engineering approach to deal with RCS prediction and reduction for naval ships.The importance of RCS,radar fundamentals,RCS basics,RCS prediction methods,and RCS reduction methods for naval ships is also discussed.
基金Supported by the National Natural Science Foundation of China(No.41576032)the Major Program for the International Cooperation of the Chinese Academy of Sciences,China(No.133337KYSB20160002)partially supported by the National Natural Science Foundation of China(Nos.41576170,61371189)
文摘The emulsification of crude oil is caused by the oil flowing into the water,resulting in the increase of oil film tension,viscosity,water content,and volume,which brings great harm to the marine ecological environment and difficulties for the cleanup of marine emergency equipment.The realization observation of emulsification crude oil will increase the response speed of marine emergency response.Therefore,we set up crude oil emulsification samples to study the physical property in laboratory and conducted radar measurements at different incidence angles in outdoor.The radar is C band in resolution of 0.7 m by 0.7 m.A fully polarimetric scatterometer(HH,VV,and VH/HV)is mounted at 1.66 m(minimum altitude)height at an incidence angle between 35°and 60°.An asphalt content of less than 3%crude oil and the filtered seawater were used to the outdoor emulsification scattering experiment.The measurement results are as follows.The water content can be used to describe the process of emulsification and it is easy to measure.Wind speed,asphalt content,seawater temperature,and photo-oxidation affect the emulsifying process of crude oil,and affects the normalized radar cross section(NRCS)of oil film but wind is not the dominant factor.It is the first time to find that the emulsification of crude oil results in an increase of NRCS.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61671464,61701523,and 61471389)
文摘A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors(AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultrawideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-tofabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.
文摘Aerospace structures can be approximately modeled as a combination of canonical structures such as cylinder,cone and ellipsoid.Thus the RCS estimation of such canonical structures is of prime interest.Furthermore metamaterials possess peculiar electromagnetic properties which can be useful in modifying the RCS of structures.This paper is aimed at calculating the RCS of an infinitely long PEC circular cylinder coated with one or two layers of metamaterial.The incident and scattered fields of coated cylinder are expressed in terms of series summation of Bessel and Hankel functions.The unknown coefficients of summation are obtained by applying appropriate boundary conditions.The computations are carried out for both principal polarizations.The computed results are validated against the numerical-based method of moments.Further,the variation of RCS of the metamaterial coated PEC cylinder with material parameters,frequency,aspect angle and polarization is analyzed.
文摘A new method of calculating the radai cross section (RCS) for wing-body blended targets is presented and verified. The method utilizes a computer program for modeling targets' geometry in terms of small pieces. The calculation is based on physical optics approximation. Examples are given to show the validity of the method.
文摘Radar Cross Section (RCS) is one of the most considerable parameters for ship stealth design. As modern ships are larger than their predecessors, RCS must be managed at each design stage for its reduction. For predicting RCS of ship, Radar Cross Section Analysis Program (RACSAN) based on Kirchhoff approximation in high frequency range has been developed. This program can present RCS including multi-bounce effect in exterior and interior structure by combination of geometric optics (GO) and physical optics (PO) methods, coating effect by using Fresnel reflection coefficient, and response time pattern for detected target. In this paper, RCS calculations of ship model with above effects are simulated by using this developed program and RCS results are discussed.
基金This work is supported by Chinese Research Institute of Electronic Science National Commission of Education, respectively
文摘The calculation formulas of monostatic radar cross-section (RCS) of arbitrary re-flectors with arbitrarily polarized plane-wave incidence are derived, where the spicular field isobtained by geometrical optics (GO) and the edge-diffracted field is calculated by the method ofequivalent currents (MEC). Some typical calculated results are given by means of RCS spatialgraphs. For both horizontal and vertical polarizations, the theoretical results obtained in thispaper agree very well with the experimental results as well as the results from uniform theory ofdiffraction.
基金supported by the National Science Fund for Young Scientists of China(6130214861571011)
文摘We develop an efficient method for polished metallic sphere’s scattering prediction in terahertz band when its frequency dispersion property is considered. By deducing scattering solution of the lossy metallic sphere, the radar cross section(RCS)of different metallic spheres is given at terahertz frequencies. The investigation of the RCS of polished metallic spheres shows the normalized RCS is always same to the metals’ normal incidence reflectivity when the sphere becomes electrically large. The metals which have high reflectivity(such as Al, Cu, Ag and Au) show that the corresponding RCS of the spheres is almost πa2 in terahertz band. The sphere’s RCS of the transition metal such as Fe begins to decrease obviously since the far infrared.
文摘On the basis of the canard configuration a contour stealth design including chiefly the wing, the fuselage and their connection type is projected. The prime project of a blended wing body vehicle with canard is provided and through the change of the fuselage head form and the different fin disposals, the radar cross section (RCS) is optimized. The average value of RCS and the value of RCS in the ± 45 ° front sector for different designs are illustrated. The model measurement proves that the project having a sharp head fuselage and 30 ° angle double fin has the minimum value of RCS. The wind tunnel test to the model with RCS optimized proved that the vehicle project has excellent aerodynamic characteristics such as high lift curve slope, up to 26° stalling angle, high lift / drag ratio equal to 8, and also has low RCS value in the front sector and in the lateral sector.
基金This project was partially supported by the National Natural Science Foundation of China (60371041).
文摘Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equation, which solves the field by marching them along the paraxial direction. Numerical results show that a single wide-angle parabofic equation run can compute multi-object RCS efficiently for angles up to 45 ° . The method provides anew and efficient numerical method for computation electromagnetics.
基金This project was supported by the Foundation of MOE of China (No. 00179).
文摘It is well known that the incorrect results will be given using either the electric or magnetic field integral equation to calculate the radar cross section (RCS) of a closed body at the interior resonance. In this paper, an effective iterative technique is used to correct the calculated surface current density from the electric field integral equation. The radar cross section is computed for an infinite conducting circular cylinder at the interior resonance, and the obtained results are in good agreement with the analytical results. The backscattering cross section of an infinite triangular cylinder in the vicinity of a resonant frequency is also calculated. It is shown that the presence method is efficient and accurate.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871386,61971427,62035014,and 61921001)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(Grant No.2019JJ20022)。
文摘In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871280,61372012,and 61671315).
文摘A scheme of combing wave absorption and phase cancellation mechanisms for widening radar cross section(RCS)reduction band is proposed.An absorptive coding metasurface implementing this scheme is derived from traditional circuit analog absorber(CAA)composed of resistive ring elements which characterize dual resonances behavior.It is constructed by replacing some of the CAA elements by another kind of resistive ring elements which is singly resonant in between the original two resonant bands and has reflection phase opposite to that of the original elements at resonance.Hence the developed metasurface achieves an improved low-RCS band over which the lower and higher sub-bands are mainly contributed by wave absorption mainly while the middle sub-band is formed by joint effect of wave absorption and antiphase cancellation mechanisms.The polarization-independent wideband RCS reduction property of the metasurface is validated by full-wave simulation results of a preliminary and an advanced design examples which employ the same element configuration but different element layout schemes as partitioned distribution and random coding.The advanced design also exhibits broadband bistatic low-RCS property and keeps a stable specular RCS reduction performance with regard to incident elevation angle up to 35◦.The advanced design is fabricated and the experimental results of the sample agrees qualitatively well with their simulated counterparts.The measured figure of merit(i.e.,low-RCS bandwidth ratio versus electrical thickness)of the sample is 40.572,which is superior to or comparable with those for most of other existing metasurface with compound RCS reduction mechanism.The proposed compound metasurface technique also features simple structure,light weight,low cost and easy fabrication compared with other techniques.This makes it promising in applications such as radar stealth and electromagnetic compatibility.
文摘For stealth technology,in order to overcome the limitations of thin-layer plasma for electromagnetic waves attenuation and further broaden the radar cross-section(RCS)reduction(RCSR)band of the metasurface,the plasma-based checkerboard metasurface composed of plasma and checkerboard metasurface is investigated to achieve better RCSR.We designed a checkerboard metasurface which can achieve abnormal reflection to reduce RCS and whose-10d B RCSR bandwidth is from 8.1 to 14.5 GHz,the RCSR principle of it lies in the backscattering cancellation,which depends on the phase difference of artificial magnetic conductor(AMC)units.The designed plasma-based checkerboard metasurface is a thin composite structure,including a checkerboard metasurface,a plasma layer,and an air gap which is between them.Full wave simulations confirm that the plasma-based checkerboard metasurface’s–10 dB RCS reduction bandwidth and RCS reduction amplitude,are both increased under different polarized waves compared with the only single plasma or the only metasurface.We also introduced the reason and mechanism of the interaction between plasma and the checkerboard metasurface to improve the RCSR effect in detail.As plasma-based checkerboard metasurface does not need the plasma to be too thick for plasma stealth,its application in practical scenarios is easier to implement.
基金Supported by National Natural Science Foundation of China(Nos.50977042 and 10904061)the program of Minisity of Science and Technology of China(No.2006AA03Z458)
文摘The influence of theα-decay radionuclide layer(the energy ofα-particles are 5.45 Me V)on the radar cross section(RCS)of sphere objects was calculated under different radioactivities,frequencies,and sphere radii.When the sphere radius is smaller than 50 cm,the tendency of the electron densities of the plasma slab is to ascend first and then descend,and the typical maximum electron densities with a radioactivity of 10 Ci/cm2raises from 7.02×1010to 1.76×1011when the sphere radii increases from 10 to 300 cm.The average data of a normalized RCS of a sphere with radius of 12.5 cm,which is coated with a radionuclide layer with different radioactivities are-0.35,-0.50,-0.79 and-1.13 d B when the radioactivity is 1,2,5 and 10 Ci/cm2,respectively.
文摘A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added into received signal over certain frequency-width. With the MFH only the intensity of received composite signals needs to be measured. Both imaging situations of far field and near field are considered in details. Special restrictions about the MFH are also discussed and simulated by numerical computation. Examples of numerical simulation show that the method is effective, applicable and perspective.
基金国防科技重点实验室基金项目(51447070104252502) The author would like to thanks Academician Lu Jian-xun and Profs Yi Xue-qin and Song Dong-an for their useful help and suggestions.