This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signa...This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.展开更多
In this report the combined method of correlation radar signal(RS)processing based on the theory of atomic functions(AF)is examined.Examples of using of new Kravchenko probability weight functions(WF)designs are prese...In this report the combined method of correlation radar signal(RS)processing based on the theory of atomic functions(AF)is examined.Examples of using of new Kravchenko probability weight functions(WF)designs are presented.Quality functional to estimate accuracy and efficiency of RS processing for concrete physical models is constructed.It is shown that the proposed approach significantly improves the quality of the coherent analysis of RS.展开更多
A simulation method to simulate the pseudorandom code P. M PP radar' s echo signal is proposed that makes use of the pre-generated Doppler simulation data, according to the relative movement parameter of the radar an...A simulation method to simulate the pseudorandom code P. M PP radar' s echo signal is proposed that makes use of the pre-generated Doppler simulation data, according to the relative movement parameter of the radar and the target. It resolves the problem of the high precision distance simulation and the high speed digital shift phase. At the same time, the radar dynamic digital video frequency target signal simulator is designed. Simulation results of the critical unit and the output waveform are given. The result of the test satisfies the system's request.展开更多
A flexible field programmable gate array based radar signal processor is presented. The radar signal processor mainly consists of five functional modules: radar system timer, binary phase coded pulse compression(PC...A flexible field programmable gate array based radar signal processor is presented. The radar signal processor mainly consists of five functional modules: radar system timer, binary phase coded pulse compression(PC), moving target detection (MTD), constant false alarm rate (CFAR) and target dots processing. Preliminary target dots information is obtained in PC, MTD, and CFAR modules and Nios I! CPU is used for target dots combination and false sidelobe target removing. Sys- tem on programmable chip (SOPC) technique is adopted in the system in which SDRAM is used to cache data. Finally, a FPGA-based binary phase coded radar signal processor is realized and simula- tion result is given.展开更多
Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the im...Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the immune operator, the algorithm reduces thesearching space of canonical algorithm and improves the convergence speed. The application ofthe RBF network trained with the algorithm in the modulation-style recognition of radar signalsdemonstrates that the network has a fast convergence speed with good performances.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
In this paper,we investigate the problem of key radar signal sorting and recognition in electronic intelligence(ELINT).Our major contribution is the development of a combined approach based on clustering and pulse rep...In this paper,we investigate the problem of key radar signal sorting and recognition in electronic intelligence(ELINT).Our major contribution is the development of a combined approach based on clustering and pulse repetition interval(PRI)transform algorithm,to solve the problem that the traditional methods based on pulse description word(PDW)were not exclusively targeted at tiny particular signals and were less time-efficient.We achieve this in three steps:firstly,PDW presorting is carried out by the DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering algorithm,and then PRI estimates of each cluster are obtained by the PRI transform algorithm.Finally,by judging the matching between various PRI estimates and key targets,it is determined whether the current signal contains key target signals or not.Simulation results show that the proposed method should improve the time efficiency of key signal recognition and deal with the complex signal environment with noise interference and overlapping signals.展开更多
With reference to the air target detection of ultra-wide band (UWB)/impulse radar(IR), the transient signal processing techniques was discussed. In weak UWB signal detection, the wavelet transforms and high order spec...With reference to the air target detection of ultra-wide band (UWB)/impulse radar(IR), the transient signal processing techniques was discussed. In weak UWB signal detection, the wavelet transforms and high order spectrum estimation techniques were preferred. In target characteristic analysis, a time domain bispectrum estimation algorithm was used to analyze the target impulse response, which could estimate accurately local scattering distribution of complex target. A free field IR experimental system installed in an anechoic chamber was used. With this system, experiments to several target models were made. The results of these experiments verified the signal processing method efficiency.展开更多
In this paper a system for automatic recognition of radar waveform is introduced. This technique is used in many spectrum management, surveillance, and cognitive radio and radar applications. For instance the transmit...In this paper a system for automatic recognition of radar waveform is introduced. This technique is used in many spectrum management, surveillance, and cognitive radio and radar applications. For instance the transmitted radar signal is coded into six codes based on pulse compression waveform such as linear frequency modulation (LFM), Frank code, P1, P2, P3 and P4 codes, the latter four are poly phase codes. The classification system is based on drawing Choi Willliams Distribution (CWD) picture and extracting features from it. In this study, various new types of features are extracted from CWD picture and then a pattern recognition method is used to recognize the spectrum. In fact, signals from CWD picture are defined using biometric techniques. We also employ false reject rate (FRR) and false accept rate (FAR) which are two types of fault measurement criteria that are deploy in biometric papers. Fairly good results are obtained for recognition of Signal to Noise Ratio (-11 dB).展开更多
Ubiquitous radar is a new radar system that provides continuous and uninterrupted multifunction capability within a coverage volume. Continuous coverage from close-in "pop-up" targets in clutter to long-range target...Ubiquitous radar is a new radar system that provides continuous and uninterrupted multifunction capability within a coverage volume. Continuous coverage from close-in "pop-up" targets in clutter to long-range targets impacts selection of waveform parameters. The coherent processing interval (CPI) must be long enough to achieve a certain signal-to-noise ratio (SNR) that ensures the efficiency of detection. The condition of detection in the case of low SNR is analyzed, and three different cases that would occur during integration are discussed and a method to determine the CPI is presented. The simulation results show that targets detection with SNR as low as -26 dB in the experimental system can possibly determine the CPI.展开更多
In order to solve the recognition of polyphase code radar signal, this paper gives two methods based on Frank code, i.e. the high-order spectrum recognition method and the fractional Fourier transform (FRFT) method, b...In order to solve the recognition of polyphase code radar signal, this paper gives two methods based on Frank code, i.e. the high-order spectrum recognition method and the fractional Fourier transform (FRFT) method, by analyzing the micro characteristics of polyphase code signals in time and frequency domain respectively. And a recognition algorithm based on Wigner-Hough transform (WHT) is developed in this paper. We verify the validity of each method by computer simulation and give relative merits and demerits. A set of results demonstrate that the algorithm based on Wigner-Hough transform has better recognition performance in low signal-to-noise (SNR) than others.展开更多
This paper proposes the Application Specific Signal Processor(ASSP)-based implementation of the real-time signal processing system in both spatial domain and time domain for a phased-array radar. This paper also propo...This paper proposes the Application Specific Signal Processor(ASSP)-based implementation of the real-time signal processing system in both spatial domain and time domain for a phased-array radar. This paper also proposes the system-on-silicon hardware design of some ASSPs including the adaptive beamformer, FFT appliation specific integrated circuit, clutter map former and update, moving target extractor and video integrator. The advantages of the processing system are compact, efficient, and robust.展开更多
With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ...With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.展开更多
In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic count...In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.展开更多
Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitte...Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.展开更多
This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t...This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
A new method based on phase difference analysis is proposed for the single-channel mixed signal separation of single-channel radar fuze.This method is used to estimate the mixing coefficients of de-noised signals thro...A new method based on phase difference analysis is proposed for the single-channel mixed signal separation of single-channel radar fuze.This method is used to estimate the mixing coefficients of de-noised signals through the cumulants of mixed signals,solve the candidate data set by the mixing coefficients and signal analytical form,and resolve the problem of vector ambiguity by analyzing the phase differences.The signal separation is realized by exchanging data of the solutions.The waveform similarity coefficients are calculated,and the time鈥攆requency distributions of separated signals are analyzed.The results show that the proposed method is effective.展开更多
Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper ...Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented.展开更多
A synthetic aperture radar (SAR) raw signal simulation algorithm for extended scenes is presented. This algorithm is based on the SAR two-dimensional system transform function (STF). To cope with range-variant nature ...A synthetic aperture radar (SAR) raw signal simulation algorithm for extended scenes is presented. This algorithm is based on the SAR two-dimensional system transform function (STF). To cope with range-variant nature of SAR STF and increase the speed of this algorithms, new formulas for range-variant phase corrections in range-Doppler (RD) domain are developed. In this way, many azimuth lines can be simulated with the same SAR STF. It only needs two-dimensional fast Fourier transform code and complex multiplications. Comparing with time-domain simulation algorithm, it is very simple and thus efficient. Simulation results have shown that this algorithm is accurate and efficient. Key words synthetic aperture radar - raw signal simulation - system transform function CLC number TP 751. 1 Foundation item: Supported by the National Natural Science Foundation of China (40376051)Biography: Sun Jin-yao (1967-), female, Ph. D. candidate, research direction: SAR image simulation and 3D recover for SAR image.展开更多
基金supported by the Foundation of Chinese People’s Liberation Army General Equipment Department(41101020303)
文摘This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.
基金Russian Foundation for Basic Research(No.12-02-90425)
文摘In this report the combined method of correlation radar signal(RS)processing based on the theory of atomic functions(AF)is examined.Examples of using of new Kravchenko probability weight functions(WF)designs are presented.Quality functional to estimate accuracy and efficiency of RS processing for concrete physical models is constructed.It is shown that the proposed approach significantly improves the quality of the coherent analysis of RS.
文摘A simulation method to simulate the pseudorandom code P. M PP radar' s echo signal is proposed that makes use of the pre-generated Doppler simulation data, according to the relative movement parameter of the radar and the target. It resolves the problem of the high precision distance simulation and the high speed digital shift phase. At the same time, the radar dynamic digital video frequency target signal simulator is designed. Simulation results of the critical unit and the output waveform are given. The result of the test satisfies the system's request.
基金Supported by the Ministerial Level Advanced Research Foundation (SP240012)
文摘A flexible field programmable gate array based radar signal processor is presented. The radar signal processor mainly consists of five functional modules: radar system timer, binary phase coded pulse compression(PC), moving target detection (MTD), constant false alarm rate (CFAR) and target dots processing. Preliminary target dots information is obtained in PC, MTD, and CFAR modules and Nios I! CPU is used for target dots combination and false sidelobe target removing. Sys- tem on programmable chip (SOPC) technique is adopted in the system in which SDRAM is used to cache data. Finally, a FPGA-based binary phase coded radar signal processor is realized and simula- tion result is given.
文摘Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the immune operator, the algorithm reduces thesearching space of canonical algorithm and improves the convergence speed. The application ofthe RBF network trained with the algorithm in the modulation-style recognition of radar signalsdemonstrates that the network has a fast convergence speed with good performances.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
文摘In this paper,we investigate the problem of key radar signal sorting and recognition in electronic intelligence(ELINT).Our major contribution is the development of a combined approach based on clustering and pulse repetition interval(PRI)transform algorithm,to solve the problem that the traditional methods based on pulse description word(PDW)were not exclusively targeted at tiny particular signals and were less time-efficient.We achieve this in three steps:firstly,PDW presorting is carried out by the DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering algorithm,and then PRI estimates of each cluster are obtained by the PRI transform algorithm.Finally,by judging the matching between various PRI estimates and key targets,it is determined whether the current signal contains key target signals or not.Simulation results show that the proposed method should improve the time efficiency of key signal recognition and deal with the complex signal environment with noise interference and overlapping signals.
文摘With reference to the air target detection of ultra-wide band (UWB)/impulse radar(IR), the transient signal processing techniques was discussed. In weak UWB signal detection, the wavelet transforms and high order spectrum estimation techniques were preferred. In target characteristic analysis, a time domain bispectrum estimation algorithm was used to analyze the target impulse response, which could estimate accurately local scattering distribution of complex target. A free field IR experimental system installed in an anechoic chamber was used. With this system, experiments to several target models were made. The results of these experiments verified the signal processing method efficiency.
文摘In this paper a system for automatic recognition of radar waveform is introduced. This technique is used in many spectrum management, surveillance, and cognitive radio and radar applications. For instance the transmitted radar signal is coded into six codes based on pulse compression waveform such as linear frequency modulation (LFM), Frank code, P1, P2, P3 and P4 codes, the latter four are poly phase codes. The classification system is based on drawing Choi Willliams Distribution (CWD) picture and extracting features from it. In this study, various new types of features are extracted from CWD picture and then a pattern recognition method is used to recognize the spectrum. In fact, signals from CWD picture are defined using biometric techniques. We also employ false reject rate (FRR) and false accept rate (FAR) which are two types of fault measurement criteria that are deploy in biometric papers. Fairly good results are obtained for recognition of Signal to Noise Ratio (-11 dB).
文摘Ubiquitous radar is a new radar system that provides continuous and uninterrupted multifunction capability within a coverage volume. Continuous coverage from close-in "pop-up" targets in clutter to long-range targets impacts selection of waveform parameters. The coherent processing interval (CPI) must be long enough to achieve a certain signal-to-noise ratio (SNR) that ensures the efficiency of detection. The condition of detection in the case of low SNR is analyzed, and three different cases that would occur during integration are discussed and a method to determine the CPI is presented. The simulation results show that targets detection with SNR as low as -26 dB in the experimental system can possibly determine the CPI.
文摘In order to solve the recognition of polyphase code radar signal, this paper gives two methods based on Frank code, i.e. the high-order spectrum recognition method and the fractional Fourier transform (FRFT) method, by analyzing the micro characteristics of polyphase code signals in time and frequency domain respectively. And a recognition algorithm based on Wigner-Hough transform (WHT) is developed in this paper. We verify the validity of each method by computer simulation and give relative merits and demerits. A set of results demonstrate that the algorithm based on Wigner-Hough transform has better recognition performance in low signal-to-noise (SNR) than others.
文摘This paper proposes the Application Specific Signal Processor(ASSP)-based implementation of the real-time signal processing system in both spatial domain and time domain for a phased-array radar. This paper also proposes the system-on-silicon hardware design of some ASSPs including the adaptive beamformer, FFT appliation specific integrated circuit, clutter map former and update, moving target extractor and video integrator. The advantages of the processing system are compact, efficient, and robust.
基金supported by Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.
基金supported by the National Natural Science Foundation of China under Grant 61172116
文摘In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.
基金TheNationalDefenceFoundation (No .NEWL5 14 35QT2 2 0 4 0 1) ,theDoctoralInnovationFoundationofSWJTU ,andtheMainTeacherSponsorProgramoftheMinistryofEducationofChina (No .6 5 ,2 0 0 0 )
文摘Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.
文摘This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
文摘A new method based on phase difference analysis is proposed for the single-channel mixed signal separation of single-channel radar fuze.This method is used to estimate the mixing coefficients of de-noised signals through the cumulants of mixed signals,solve the candidate data set by the mixing coefficients and signal analytical form,and resolve the problem of vector ambiguity by analyzing the phase differences.The signal separation is realized by exchanging data of the solutions.The waveform similarity coefficients are calculated,and the time鈥攆requency distributions of separated signals are analyzed.The results show that the proposed method is effective.
基金Supported by the National Natural Science Founda-tion of China (49984001)
文摘Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented.
文摘A synthetic aperture radar (SAR) raw signal simulation algorithm for extended scenes is presented. This algorithm is based on the SAR two-dimensional system transform function (STF). To cope with range-variant nature of SAR STF and increase the speed of this algorithms, new formulas for range-variant phase corrections in range-Doppler (RD) domain are developed. In this way, many azimuth lines can be simulated with the same SAR STF. It only needs two-dimensional fast Fourier transform code and complex multiplications. Comparing with time-domain simulation algorithm, it is very simple and thus efficient. Simulation results have shown that this algorithm is accurate and efficient. Key words synthetic aperture radar - raw signal simulation - system transform function CLC number TP 751. 1 Foundation item: Supported by the National Natural Science Foundation of China (40376051)Biography: Sun Jin-yao (1967-), female, Ph. D. candidate, research direction: SAR image simulation and 3D recover for SAR image.