期刊文献+
共找到3,878篇文章
< 1 2 194 >
每页显示 20 50 100
Novel method for extraction of ship target with overlaps in SAR image via EM algorithm
1
作者 CAO Rui WANG Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期874-887,共14页
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition... The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method. 展开更多
关键词 expectation maximization(EM)algorithm image processing imaging projection plane(IPP) overlapping ship tar-get synthetic aperture radar(SAR)
下载PDF
Deep convolutional neural network for meteorology target detection in airborne weather radar images 被引量:2
2
作者 YU Chaopeng XIONG Wei +1 位作者 LI Xiaoqing DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1147-1157,共11页
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de... Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes. 展开更多
关键词 meteorology target detection ground clutter sup-pression weather radar images convolutional neural network(CNN)
下载PDF
Comparison of Satellite Cloud Image and Radar of Precipitation Process on July 31st,2007
3
作者 才奎志 袁子鹏 +2 位作者 孙晓巍 桑明刚 曲荣强 《Meteorological and Environmental Research》 CAS 2010年第8期55-57,104,共4页
Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h ... Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h precipitation in Fushun and Dandong was more than 50 mm.Through the analysis of strong precipitation period,the structure of clouds had a little decline from the stage of development to maturity.The gray value and gradient degree around were both larger in the center of heavy precipitation. 展开更多
关键词 Satellite cloud image Doppler radar Gray value Echo intensity China
下载PDF
Lira-YOLO: a lightweight model for ship detection in radar images 被引量:12
4
作者 ZHOU Long WEI Suyuan +3 位作者 CUI Zhongma FANG Jiaqi YANG Xiaoting DING Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期950-956,共7页
For the detection of marine ship objects in radar images, large-scale networks based on deep learning are difficult to be deployed on existing radar-equipped devices. This paper proposes a lightweight convolutional ne... For the detection of marine ship objects in radar images, large-scale networks based on deep learning are difficult to be deployed on existing radar-equipped devices. This paper proposes a lightweight convolutional neural network, LiraNet, which combines the idea of dense connections, residual connections and group convolution, including stem blocks and extractor modules.The designed stem block uses a series of small convolutions to extract the input image features, and the extractor network adopts the designed two-way dense connection module, which further reduces the network operation complexity. Mounting LiraNet on the object detection framework Darknet, this paper proposes Lira-you only look once(Lira-YOLO), a lightweight model for ship detection in radar images, which can easily be deployed on the mobile devices. Lira-YOLO's prediction module uses a two-layer YOLO prediction layer and adds a residual module for better feature delivery. At the same time, in order to fully verify the performance of the model, mini-RD, a lightweight distance Doppler domain radar images dataset, is constructed. Experiments show that the network complexity of Lira-YOLO is low, being only 2.980 Bflops, and the parameter quantity is smaller, which is only 4.3 MB. The mean average precision(mAP) indicators on the mini-RD and SAR ship detection dataset(SSDD) reach 83.21% and 85.46%, respectively,which is comparable to the tiny-YOLOv3. Lira-YOLO has achieved a good detection accuracy with less memory and computational cost. 展开更多
关键词 LIGHTWEIGHT radar images ship detection you only look once(YOLO)
下载PDF
Three-dimensional positions of scattering centers reconstruction from multiple SAR images based on radargrammetry 被引量:3
5
作者 钟金荣 文贡坚 +1 位作者 回丙伟 李德仁 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1776-1789,共14页
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of... A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method. 展开更多
关键词 multiple synthetic aperture radar(SAR) images three-dimensional scattering center position reconstruction radargrammetry
下载PDF
PAN-DeSpeck:A Lightweight Pyramid and Attention-Based Network for SAR Image Despeckling
6
作者 Saima Yasmeen Muhammad Usman Yaseen +2 位作者 Syed Sohaib Ali Moustafa M.Nasralla Sohaib Bin Altaf Khattak 《Computers, Materials & Continua》 SCIE EI 2023年第9期3671-3689,共19页
SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in remo... SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in removing speckle noise.However,these CNN-basedmethods have a fewlimitations.They do not decouple complex background information in amulti-resolutionmanner.Moreover,they have deep network structures thatmay result in many parameters,limiting their applicability tomobile devices.Furthermore,extracting key speckle information in the presence of complex background is also a major problem with SAR.The proposed study addresses these limitations by introducing a lightweight pyramid and attention-based despeckling(PAN-Despeck)network.The primary objective is to enhance image quality and enable improved information interpretation,particularly on mobile devices and scenarios involving complex backgrounds.The PAN-Despeck network leverages domainspecific knowledge and integrates Gaussian Laplacian image pyramid decomposition for multi-resolution image analysis.By utilizing this approach,complex background information can be effectively decoupled,leading to enhanced despeckling performance.Furthermore,the attention mechanism selectively focuses on key speckle features and facilitates complex background removal.The network incorporates recursive and residual blocks to ensure computational efficiency and accelerate training speed,making it lightweight while maintaining high performance.Through comprehensive evaluations,it is demonstrated that PAN-Despeck outperforms existing image restoration methods.With an impressive average peak signal-to-noise ratio(PSNR)of 28.355114 and a remarkable structural similarity index(SSIM)of 0.905467,it demonstrates exceptional performance in effectively reducing speckle noise in SAR images.The source code for the PAN-DeSpeck network is available on GitHub. 展开更多
关键词 Synthetic Aperture radar(SAR) SAR image despeckling speckle noise deep learning pyramid networks multiscale image despeckling
下载PDF
Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique 被引量:2
7
作者 朱正为 周建江 《Journal of Central South University》 SCIE EI CAS 2011年第3期809-815,共7页
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F... A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results. 展开更多
关键词 synthetic-aperture radar image reconstruction SUPER-RESOLUTION singular value decomposition adaptive-threshold
下载PDF
Investigation of Simulating Radar Images Concerning the Multipath Scattering Effect 被引量:1
8
作者 YangChun-hua ZhuGuo-qiang 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第3期313-318,共6页
In the composed system of a target and rough surface, the electromagnetic scattering mechanism, especially the multipath scattering, is investigated. Using physical optics double bouncing algorithm, the multipath scat... In the composed system of a target and rough surface, the electromagnetic scattering mechanism, especially the multipath scattering, is investigated. Using physical optics double bouncing algorithm, the multipath scattering model of the system has been established. Simulated by a wide-band radar signal and based on fractal rough surface, the artificial echo of the target has been obtained in virtue of the established multipath scattering model. By simulating to image the target in one dimension using the artificial echo, two kinds of range profiles are attained. It is found that one is from the target and the other is from the multipath scattering effect. Key words multipath scattering - radar imaging - rough surface scattering CLC number O 451 Foundation item: Supported by the Key Laboratory Foundation of National Defense Science and Technology (99JS93. 1. 2. JW1204)Biography: Yang Chun-hua(1978-), male, Ph. D candidate, research direction: radio wave propagation and wiresless communication. 展开更多
关键词 multipath scattering radar imaging rough surface scattering
下载PDF
A novel oil spill detection method from synthetic aperture radar imageries via a bidimensional empirical mode decomposition 被引量:2
9
作者 YANG Yonghu LI Ying ZHU Xueyuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第7期86-94,共9页
Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark... Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately. 展开更多
关键词 bidimensional empirical mode decomposition synthetic aperture radar image detection of oil spill hilbert spectral analysis
下载PDF
Method of moving target detection based on sub-image cancellation for single-antenna airborne synthetic aperture radar 被引量:4
10
作者 Liu Shujun Yuan Yunneng Gao Fei Mao Shiyi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期448-453,共6页
The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of ... The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely. 展开更多
关键词 synthetic aperture radar moving target detection sub-image cancellation parameter estimation.
下载PDF
Electromagnetic scattering and imaging simulation of extremely large-scale sea-ship scene based on GPU parallel technology
11
作者 Cheng-Wei Zhang Zhi-Qin Zhao +2 位作者 Wei Yang Li-Lai Zhou Hai-Yu Zhu 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期16-23,共8页
Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration... Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image. 展开更多
关键词 Multi graphics processing unit radar imaging Sea-ship Shooting and bouncing rays
下载PDF
Texture invariant estimation of equivalent number of looks based on log-cumulants in polarimetric radar imagery
12
作者 Xianghui Yuan Tao Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期58-66,共9页
A novel estimation of the equivalent number of looks (ENL) is proposed in statistical modeling of multilook polarimetric synthetic aperture radar (PolSAR) images for the product model, which is based on the log-determ... A novel estimation of the equivalent number of looks (ENL) is proposed in statistical modeling of multilook polarimetric synthetic aperture radar (PolSAR) images for the product model, which is based on the log-determinant moments (LDM). The LDM estimators discovered by looking at certain log-cumulants of the intensities of different polarization channels and the multilook polarimetric covariance matrix, which can be used for both the Gaussian model and all product models. This estimator has analytic expressions, and uses the full covariance matrix and intensities as input, which makes more statistical information available. Experiments based on simulated data and real data are performed. The comparisons among the widely used methods of equivalent number of looks (ENL) estimation for the product model such as K and G0 distributions show that the performance of the LDM estimator is outstanding. The performance of estimators for the real data of San Francisco and Flevoland is analyzed and the results are according to those of simulated data. Finally, it can be concluded that the LDM estimator is well robust to each product model with low computational complexity and high accuracy. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 Covariance matrix Matrix algebra Method of moments Parameter estimation POLARIMETERS radar radar imaging Tracking radar
下载PDF
A novel algorithm for ocean wave direction inversion from X-band radar images based on optical flow method
13
作者 WANG Li CHENG Yunfei +1 位作者 HONG Lijuan LIU Xinyu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第3期88-93,共6页
As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow... As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow method is developed for the ocean wave direction inversion of the ocean wave fields imaged by the X-band radar continuously. The proposed algorithm utilizes the echo images received by the X-band wave monitoring radar to estimate the optical flow motion, and then the actual wave propagation direction can be obtained by taking a weighted average of the motion vector for each pixel. Compared with the traditional ocean wave direction inversion method based on frequency-domain, the novel algorithm is fully using a time-domain signal processing method without determination of a current velocity and a modulation transfer function(MTF). In the meantime,the novel algorithm is simple, efficient and there is no need to do something more complicated here. Compared with traditional ocean wave direction inversion method, the ocean wave direction of derived by using this proposed method matches well with that measured by an in situ buoy nearby and the simulation data. These promising results demonstrate the efficiency and accuracy of the algorithm proposed in the paper. 展开更多
关键词 X-band radar optical flow weighted average ocean wave direction radar image
下载PDF
Improved Multi-channel Blind Image Restoration Algorithm for UWB Radar
14
作者 王卫江 《Journal of Beijing Institute of Technology》 EI CAS 2009年第1期70-73,共4页
The imaging problem of low signal to noise ratio (SNR)echo is very important for ultra-wide band (UWB) through-wall radar. An improved multi-channel blind image restoration algorithm based on sub-space and constra... The imaging problem of low signal to noise ratio (SNR)echo is very important for ultra-wide band (UWB) through-wall radar. An improved multi-channel blind image restoration algorithm based on sub-space and constrained least square (CLS) is presented and applied to UWB radar system to deal with this issue. The high resolution of radar image is equivalent to multi-channel blind image restoration based on the improved model of the through-wall radar echo. And a new cost function is proposed to the multi-channel blind image restoration by considering the concept of sub-space as the limitation of blur identification. The proposed algorithm has all advantages of CLS and sub-space, and converts the image estimation to alternating-minimizing the two cost functions. Experimental results prove that the proposed algorithm is effective at improving the resolution of radar image even at low SNR. 展开更多
关键词 ultra-wide band through-wall radar blind image restoration constrained least square
下载PDF
SAR IMAGE RECOGNITION BASED ON MULTI-ASPECT OF SHADOW INFORMATION 被引量:2
15
作者 杨露菁 郝威 王德石 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期320-326,共7页
The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition.... The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method. 展开更多
关键词 image recognition synthetic aperture radar (SAR) shadow information chain code
下载PDF
AIS和RADAR/ARPA在保障船舶安全航行中的应用探讨 被引量:1
16
作者 陈林春 吴晓红 《浙江国际海运职业技术学院学报》 2010年第4期9-12,共4页
基于AIS和RADAR/ARPA在航海应用功能上的分析,在探讨AIS和RADAR/ARPA在保障船舶海上安全航行时各自优缺点的基础上,阐述了AIS和RADAR/ARPA在船舶安全航行中的优势互补,为综合使用航海仪器确保船舶安全航行提供新的途径。
关键词 AIS radar/arpa 安全航行 优势互补
下载PDF
Suppression of Speckle in SAR Images Using Wavelet-Based HMM
17
作者 张志明 王越 +1 位作者 陶然 周思永 《Journal of Beijing Institute of Technology》 EI CAS 2001年第1期86-92,共7页
In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic tra... In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic transformed to change the statistical property of the speckles. Then an HMT was constructed in the correspondent wavelet domain. Based on this model, the image signal was restored by maximum likelihood estimation and speckle noise was suppressed. Simulating SAR images had shown that the performance of the filter is satisfactory for both speckle smoothing and edges presentation, and for generating visually natural images as well. 展开更多
关键词 synthetic aperture radar (SAR) WAVELET hidden Markov model(HMM) noise suppression image processing
下载PDF
Entropy function optimization for radar imaging
18
作者 邱晓晖 陈昊 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期427-430,共4页
The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem ... The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc. 展开更多
关键词 radar signal processing inverse synthetic aperture radar(ISAR) imaging AUTO-FOCUSING
下载PDF
Optimum selection of common master image for ground deformation monitoring based on PS-DInSAR technique 被引量:6
19
作者 Zhu Zhengwei Zhou Jianjiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1213-1220,共8页
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio... Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable. 展开更多
关键词 remote sensing ground deformation monitoring differential SAR interferometry common master image permanent scatterer synthetic aperture radar image analysis.
下载PDF
Application of Superresolution Techniques to Radar Imaging 被引量:4
20
作者 A. Fanrina, F.Prodi & F. Vinelli(Alenia. Una Azienda Finmeccanica. Radar & C2 DivisionVia Tiburtina km. 12.400. 00131 Roma, Italy) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1994年第1期1-14,共14页
Modern spectral estimation techniques (superresolution in technical jargon) have been applied to many fields of signal processing since many years[1][2]. Application to radar imaging, mainlyto ISAR (Inverse Synthetic ... Modern spectral estimation techniques (superresolution in technical jargon) have been applied to many fields of signal processing since many years[1][2]. Application to radar imaging, mainlyto ISAR (Inverse Synthetic Aperture Radar) is documented in some recent papers[3] to [6]. Applications have been attempted also to SAR (Synthetic Aperture Radar)[7][8]. In these fields the benefit ofspectral estimation reveals in a resolution beyond the Rayleigh limits set by compressed pulse andsynthetic aperture lengths. Furthermore very low sidelobes of point scatterer response are obtained.In this paper superresolution has been applied both to simulated stepped-frequency ISAR dataand to real ERS-1 SAR data; the achieved results are encouraging and suggest a more extensivepractical application of the technique. The paper is organized in two parts. In the first we have applied the autoregressive (AR) and the minimum variance (MV)-Capon methods to improve therange resolution of simulated ISAR data. In the second part we have conceived an upgraded versionof spectral analysis (SPECAN) processing to obtain a SAR image of better quality. The method hasbeen tested on recorded live data of ERS-1 mission. 展开更多
关键词 radar imaging SAR ISAR ERS- 1 SUPERRESOLUTION
下载PDF
上一页 1 2 194 下一页 到第
使用帮助 返回顶部