针对单一传感器SLAM(Simultaneous Localization And Mapping)技术在复杂环境中存在精度低、可靠性差等问题,提出一种基于因子图消元优化的激光雷达、视觉和IMU(Inertial Measurement Unit)融合SLAM算法(Multi Factor Graph fusion SLAM...针对单一传感器SLAM(Simultaneous Localization And Mapping)技术在复杂环境中存在精度低、可靠性差等问题,提出一种基于因子图消元优化的激光雷达、视觉和IMU(Inertial Measurement Unit)融合SLAM算法(Multi Factor Graph fusion SLAM with IMU as the Dominant system,ID-MFG-SLAM).首先,采用多因子图模型,提出以IMU为主系统,视觉与激光雷达为辅系统,通过引入辅系统观测因子约束IMU偏差,并接收IMU里程计因子实现运动预测与融合的全新结构.之后,为降低融合后的优化成本,加入滑窗机制并设计基于Householder变换的QR分解消元法将因子图转换为贝叶斯网络.最后,引入一种球面线性插值与线性插值之间的自适应插值算法,将激光雷达点云投影到单位球体上实现视觉特征点深度估计.实验结果表明,相比其他经典算法,该方法在复杂大、小场景中绝对轨迹误差分别可达到约0.68 m和0.24 m,具有更高的精度和可靠性.展开更多
文摘针对单一传感器SLAM(Simultaneous Localization And Mapping)技术在复杂环境中存在精度低、可靠性差等问题,提出一种基于因子图消元优化的激光雷达、视觉和IMU(Inertial Measurement Unit)融合SLAM算法(Multi Factor Graph fusion SLAM with IMU as the Dominant system,ID-MFG-SLAM).首先,采用多因子图模型,提出以IMU为主系统,视觉与激光雷达为辅系统,通过引入辅系统观测因子约束IMU偏差,并接收IMU里程计因子实现运动预测与融合的全新结构.之后,为降低融合后的优化成本,加入滑窗机制并设计基于Householder变换的QR分解消元法将因子图转换为贝叶斯网络.最后,引入一种球面线性插值与线性插值之间的自适应插值算法,将激光雷达点云投影到单位球体上实现视觉特征点深度估计.实验结果表明,相比其他经典算法,该方法在复杂大、小场景中绝对轨迹误差分别可达到约0.68 m和0.24 m,具有更高的精度和可靠性.