Information is lacking regarding the visual cues used by Helicoverpa armigera moths during nectar feeding. Here, we investigated the preference for radial gradient patterns in H. armigera moths. The results indicated ...Information is lacking regarding the visual cues used by Helicoverpa armigera moths during nectar feeding. Here, we investigated the preference for radial gradient patterns in H. armigera moths. The results indicated that both sexes shared a preference to plain flower models of blue and cyan. The radial gradient pattern (cyan as nectar guide color and blue as petal color) was more attractive than its component plain colors (cyan or blue), especially in male moths. Number of corolla petals did not influence the attractiveness of the cyan-blue pattern. The addition of a tertiary floral attractant to white-blue or cyan-blue radial gradient patterns could dramatically enhance the attractiveness of visual cues in males rather than females, suggesting that males gave a higher weight in olfactory modality than females gave, while females gave a higher weight in vision modality than males gave. All together, we found an optimal combination of floral cues in H. armigera sexes as follows: A tertiary floral attractant (2 μL dose of phenylacetaldehyde, benzyl acetate, and salicylaldehyde mixed in 26:15:2) added to white-blue radial gradient flower model (3 cm in diameter). To our knowledge, this is the first time that rose curve and radial gradient tools were used to simulate floral pattern in the studies of flower-visiting insects.展开更多
It is shown that aplanatic lens with a radial gradient of refraction index is simultaneously a telescopic lens, notably not only for an axial beam, but also for an off axis parallel beam. Consideration is carried out ...It is shown that aplanatic lens with a radial gradient of refraction index is simultaneously a telescopic lens, notably not only for an axial beam, but also for an off axis parallel beam. Consideration is carried out by an algebraic way on the basis of regularities of ray paths. It is also shown that aplanatic and telescopic properties of the lens are independent of the refracting surface shapes. Various versions of lens performance are shown below.展开更多
As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In thi...As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al.展开更多
Optical tweezers play an important role in many domains, especially in life science. And optical gradient force is necessary for constructing optical tweezers. In this paper, the optical gradient force in the focal re...Optical tweezers play an important role in many domains, especially in life science. And optical gradient force is necessary for constructing optical tweezers. In this paper, the optical gradient force in the focal region of radial varying polarization Bessel- Gauss beam is investigated numerically by means of vector diffraction theory. Results show that the beam parameter and vary rate parameter that indicates the change speed of polarization rotation angle affect the optical gradient force pattern very considerably, and some novel force distributions may come into being, such as multiple force minimums, force ring, and force crust. Therefore, the focusing of radial varying polarization Bessel-Gauss beam can be used to construct optical traps.展开更多
The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimension...The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry(SGG) are contrastively demonstrated based on the analytical error model and numerical simulation,respectively.Firstly,the new analytical error model of the cumulative geoid height,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established,respectively.In 250 degrees,the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 1/2 times higher than that measured by the three-dimensional gravity gradient V ij.Secondly,the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation,respectively.The study results show that when the measurement error of the gravity gradient is 3×10 12 /s 2,the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees,respectively.The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%-40% on average compared with that using the radial gravity gradient V zz in 250 degrees.Finally,by mutual verification of the analytical error model and numerical simulation,the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients,respectively.Therefore,it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 13 /s 2-10 15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.展开更多
The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter functi...The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform,parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and "bumpon-tail" profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould(TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution.展开更多
文摘Information is lacking regarding the visual cues used by Helicoverpa armigera moths during nectar feeding. Here, we investigated the preference for radial gradient patterns in H. armigera moths. The results indicated that both sexes shared a preference to plain flower models of blue and cyan. The radial gradient pattern (cyan as nectar guide color and blue as petal color) was more attractive than its component plain colors (cyan or blue), especially in male moths. Number of corolla petals did not influence the attractiveness of the cyan-blue pattern. The addition of a tertiary floral attractant to white-blue or cyan-blue radial gradient patterns could dramatically enhance the attractiveness of visual cues in males rather than females, suggesting that males gave a higher weight in olfactory modality than females gave, while females gave a higher weight in vision modality than males gave. All together, we found an optimal combination of floral cues in H. armigera sexes as follows: A tertiary floral attractant (2 μL dose of phenylacetaldehyde, benzyl acetate, and salicylaldehyde mixed in 26:15:2) added to white-blue radial gradient flower model (3 cm in diameter). To our knowledge, this is the first time that rose curve and radial gradient tools were used to simulate floral pattern in the studies of flower-visiting insects.
文摘It is shown that aplanatic lens with a radial gradient of refraction index is simultaneously a telescopic lens, notably not only for an axial beam, but also for an off axis parallel beam. Consideration is carried out by an algebraic way on the basis of regularities of ray paths. It is also shown that aplanatic and telescopic properties of the lens are independent of the refracting surface shapes. Various versions of lens performance are shown below.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872341 and 22075261)。
文摘As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al.
文摘Optical tweezers play an important role in many domains, especially in life science. And optical gradient force is necessary for constructing optical tweezers. In this paper, the optical gradient force in the focal region of radial varying polarization Bessel- Gauss beam is investigated numerically by means of vector diffraction theory. Results show that the beam parameter and vary rate parameter that indicates the change speed of polarization rotation angle affect the optical gradient force pattern very considerably, and some novel force distributions may come into being, such as multiple force minimums, force ring, and force crust. Therefore, the focusing of radial varying polarization Bessel-Gauss beam can be used to construct optical traps.
基金Project supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences for Distinguished Young Scholars (Grant No. KZCX2-EW-QN114)the National Natural Science Foundation of China for Young Scholars (GrantNos. 41004006,41131067,and 11173049)+3 种基金the Merit-Based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars (Grant No. 2011)the Open Research Fund Programof the Key Laboratory of Computational Geodynamics of the Chinese Academy of Sciences (Grant No. 2011-04)the Frontier Field Program of Knowledge Innovation of Institute of Geodesy and Geophysics of the Chinese Academy of Sciencesthe Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Grant No. PLN1113)
文摘The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry(SGG) are contrastively demonstrated based on the analytical error model and numerical simulation,respectively.Firstly,the new analytical error model of the cumulative geoid height,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established,respectively.In 250 degrees,the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 1/2 times higher than that measured by the three-dimensional gravity gradient V ij.Secondly,the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation,respectively.The study results show that when the measurement error of the gravity gradient is 3×10 12 /s 2,the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees,respectively.The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%-40% on average compared with that using the radial gravity gradient V zz in 250 degrees.Finally,by mutual verification of the analytical error model and numerical simulation,the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients,respectively.Therefore,it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 13 /s 2-10 15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.
基金supported by National Natural Science Foundation of China(No.11405271)
文摘The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform,parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and "bumpon-tail" profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould(TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution.