This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Le...This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN.展开更多
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable ...A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
Solving large radial basis function (RBF) interpolation problem with non-customized methods is computationally expensive and the matrices that occur are typically badly conditioned. In order to avoid these difficult...Solving large radial basis function (RBF) interpolation problem with non-customized methods is computationally expensive and the matrices that occur are typically badly conditioned. In order to avoid these difficulties, we present a fitting based on radial basis functions satisfying side conditions by least squares, although compared with interpolation the method loses some accuracy, it reduces the computational cost largely. Since the fitting accuracy and the non-singularity of coefficient matrix in normal equation are relevant to the uniformity of chosen centers of the fitted RBE we present a choice method of uniform centers. Numerical results confirm the fitting efficiency.展开更多
The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to impl...The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems.展开更多
Regional logistics demand forecast is the basis for government departments to make logistics planning and logistics related policies.It has the characteristics of a small amount of data and being nonlinear,so the trad...Regional logistics demand forecast is the basis for government departments to make logistics planning and logistics related policies.It has the characteristics of a small amount of data and being nonlinear,so the traditional prediction method can not guarantee the accuracy of prediction.Taking Xiamen City as an example,this paper selects the primary industry,the secondary industry,the tertiary industry,the total amount of investment in fixed assets,total import and export volume,per capita consumption expenditure,and the total retail sales of social consumer goods as the influencing factors,and uses a combining model least square and radial basis function(LS-RBF)neural network to analyze the related data from years 2000 to 2019,so as to predict the logistics demand from years 2020 to 2024.The model can well fit the training data,and the experimental results obtained from the comparison between the predicted value and the actual value in 2019 show that the error rate is very small.Therefore,the prediction results are reasonable and reliable.This method has high prediction accuracy,and it is suitable for irregular regional logistics demand forecast.展开更多
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r...Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems.展开更多
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an...In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms.展开更多
This paper studies the problem applying Radial Basis Function Network(RBFN) which is trained by the Recursive Least Square Algorithm(RLSA) to the recognition of one dimensional images of radar targets. The equivalence...This paper studies the problem applying Radial Basis Function Network(RBFN) which is trained by the Recursive Least Square Algorithm(RLSA) to the recognition of one dimensional images of radar targets. The equivalence between the RBFN and the estimate of Parzen window probabilistic density is proved. It is pointed out that the I/O functions in RBFN hidden units can be generalized to general Parzen window probabilistic kernel function or potential function, too. This paper discusses the effects of the shape parameter a in the RBFN and the forgotten factor A in RLSA on the results of the recognition of three kinds of kernel function such as Gaussian, triangle, double-exponential, at the same time, also discusses the relationship between A and the training time in the RBFN.展开更多
Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a s...Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared to the corresponding models obtained with radial basis function (RBF) neural networks. The results indicated the trained LS-SVMs with a radial basis function kernel had satisfactory performance in modelling surface fluxes; its excellent approximation and generalization property shed new light on the study on complex processes in ecosystem.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addr...<div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addressing the criticisms of their black-box behaviour. Such analysis of RBFNs for hydrological modelling has previously been limited to exploring perturbations to both inputs and connecting weights. In this paper, the backward chaining rule that has been used for sensitivity analysis of MLPs, is applied to RBFNs and it is shown how such analysis can provide insight into physical relationships. A trigonometric example is first presented to show the effectiveness and accuracy of this approach for first order derivatives alongside a comparison of the results with an equivalent MLP. The paper presents a real-world application in the modelling of river stage shows the importance of such approaches helping to justify and select such models.</span> </div>展开更多
随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高...随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高尺度小波能量谱算法对微电网与大电网公共连接点(point of common coupling,PCC)处检测到的电流进行分解,提取适应不同容量情况的短路故障特征值,实现了不同容量下微电网短路故障的早期检测;利用小波能量谱特征结合基于正交最小二乘法(orthogonal least square,OLS)的径向基函数(radial basis function,RBF)神经网络算法提出一种适用于不同容量微电网的短路故障区域定位方法,并进行仿真验证;在此基础上设计并网模式微电网短路故障保护硬件系统,并进行实验验证。结果表明,所设计的保护系统能够快速、准确地同时实现并网模式下交流微电网短路故障的早期检测与区域定位。展开更多
文摘This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN.
文摘A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
基金Supported by National Natural Science Youth Foundation (10401021).
文摘Solving large radial basis function (RBF) interpolation problem with non-customized methods is computationally expensive and the matrices that occur are typically badly conditioned. In order to avoid these difficulties, we present a fitting based on radial basis functions satisfying side conditions by least squares, although compared with interpolation the method loses some accuracy, it reduces the computational cost largely. Since the fitting accuracy and the non-singularity of coefficient matrix in normal equation are relevant to the uniformity of chosen centers of the fitted RBE we present a choice method of uniform centers. Numerical results confirm the fitting efficiency.
基金the Natural Science Foundation of Anhui Province(Grant No.1908085QA09)the University Natural Science Research Project of Anhui Province(KJ2019A0591).
文摘The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems.
基金Social Science Research Project of Education Department of Fujian Province,China(No.JAS160571)Key Project of Education and Teaching Reform of Undergraduate Universities in Fujian Province,China(No.FBJG20190130)Educational Research Project of Social Science for Young and Middle Aged Teachers in Fujian Province,China(No.JAS19371)。
文摘Regional logistics demand forecast is the basis for government departments to make logistics planning and logistics related policies.It has the characteristics of a small amount of data and being nonlinear,so the traditional prediction method can not guarantee the accuracy of prediction.Taking Xiamen City as an example,this paper selects the primary industry,the secondary industry,the tertiary industry,the total amount of investment in fixed assets,total import and export volume,per capita consumption expenditure,and the total retail sales of social consumer goods as the influencing factors,and uses a combining model least square and radial basis function(LS-RBF)neural network to analyze the related data from years 2000 to 2019,so as to predict the logistics demand from years 2020 to 2024.The model can well fit the training data,and the experimental results obtained from the comparison between the predicted value and the actual value in 2019 show that the error rate is very small.Therefore,the prediction results are reasonable and reliable.This method has high prediction accuracy,and it is suitable for irregular regional logistics demand forecast.
基金Supported by the Science Technology Development Project of Jilin Province,China(No.20020503-2).
文摘Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems.
文摘In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms.
基金Supported by the National Natural Science Foundationthe Doctoral Foundation of the State Education Commission of China
文摘This paper studies the problem applying Radial Basis Function Network(RBFN) which is trained by the Recursive Least Square Algorithm(RLSA) to the recognition of one dimensional images of radar targets. The equivalence between the RBFN and the estimate of Parzen window probabilistic density is proved. It is pointed out that the I/O functions in RBFN hidden units can be generalized to general Parzen window probabilistic kernel function or potential function, too. This paper discusses the effects of the shape parameter a in the RBFN and the forgotten factor A in RLSA on the results of the recognition of three kinds of kernel function such as Gaussian, triangle, double-exponential, at the same time, also discusses the relationship between A and the training time in the RBFN.
基金Project supported by the National Science Fund for OutstandingYouth Overseas (No. 40328001) and the Key Research Plan of theKnowledge Innovation Project of the Institute of Geographic Sciencesand Natural Resources, Chinese Academy of Sciences (No.KZCXI-SW-01)
文摘Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared to the corresponding models obtained with radial basis function (RBF) neural networks. The results indicated the trained LS-SVMs with a radial basis function kernel had satisfactory performance in modelling surface fluxes; its excellent approximation and generalization property shed new light on the study on complex processes in ecosystem.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addressing the criticisms of their black-box behaviour. Such analysis of RBFNs for hydrological modelling has previously been limited to exploring perturbations to both inputs and connecting weights. In this paper, the backward chaining rule that has been used for sensitivity analysis of MLPs, is applied to RBFNs and it is shown how such analysis can provide insight into physical relationships. A trigonometric example is first presented to show the effectiveness and accuracy of this approach for first order derivatives alongside a comparison of the results with an equivalent MLP. The paper presents a real-world application in the modelling of river stage shows the importance of such approaches helping to justify and select such models.</span> </div>
文摘随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高尺度小波能量谱算法对微电网与大电网公共连接点(point of common coupling,PCC)处检测到的电流进行分解,提取适应不同容量情况的短路故障特征值,实现了不同容量下微电网短路故障的早期检测;利用小波能量谱特征结合基于正交最小二乘法(orthogonal least square,OLS)的径向基函数(radial basis function,RBF)神经网络算法提出一种适用于不同容量微电网的短路故障区域定位方法,并进行仿真验证;在此基础上设计并网模式微电网短路故障保护硬件系统,并进行实验验证。结果表明,所设计的保护系统能够快速、准确地同时实现并网模式下交流微电网短路故障的早期检测与区域定位。