In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservation...In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservations principle at the groove/land boundary in each method. The block-weight approach was implemented to deal with the non-coincidence of mesh and radial groove pattern in nu- merical method. It was observed that the numerical solutions had higher precision as mesh number exceed 70 x 70, and the relaxation iteration of differential scheme presented the fastest convergence speed when relaxation factor was close to 1.94.展开更多
A numerical model to predict film torque of hydro-viscous clutch was developed.The model was established with computational fluid dynamics(CFD).The pressure distribution,velocity of flow and film torque were obtaine...A numerical model to predict film torque of hydro-viscous clutch was developed.The model was established with computational fluid dynamics(CFD).The pressure distribution,velocity of flow and film torque were obtained based on vertical-horizontal grooved plate and radial grooved plate separately.The boundary conditions,such as the relative rotation,the fluid temperature and the oil feeding pressure,were also discussed.The results showed that the film torque of two kinds of grooved plate increased with increasing relative rotation.However,the film torque decreased with increasing fluid temperature and feeding pressure.Meanwhile,the film torque of radial grooved plate was less than vertical-horizontal grooved plate at the same condition.Our study showed that the model can efficiently calculate the film torque with complex geometry parameters and boundary conditions.展开更多
基金Supported by the Ministerial Level Foundation(2220060029)
文摘In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservations principle at the groove/land boundary in each method. The block-weight approach was implemented to deal with the non-coincidence of mesh and radial groove pattern in nu- merical method. It was observed that the numerical solutions had higher precision as mesh number exceed 70 x 70, and the relaxation iteration of differential scheme presented the fastest convergence speed when relaxation factor was close to 1.94.
基金Supported by the National Natural Science Foundation of China(51275039)
文摘A numerical model to predict film torque of hydro-viscous clutch was developed.The model was established with computational fluid dynamics(CFD).The pressure distribution,velocity of flow and film torque were obtained based on vertical-horizontal grooved plate and radial grooved plate separately.The boundary conditions,such as the relative rotation,the fluid temperature and the oil feeding pressure,were also discussed.The results showed that the film torque of two kinds of grooved plate increased with increasing relative rotation.However,the film torque decreased with increasing fluid temperature and feeding pressure.Meanwhile,the film torque of radial grooved plate was less than vertical-horizontal grooved plate at the same condition.Our study showed that the model can efficiently calculate the film torque with complex geometry parameters and boundary conditions.