Objective: To study the expressions of basic fibroblast growth factor (bFGF) and its receptor (bFGFR) in bone marrow of mice with acute radiation injury, and to evaluate the effect of Ligustrazine (Lt) on them. Method...Objective: To study the expressions of basic fibroblast growth factor (bFGF) and its receptor (bFGFR) in bone marrow of mice with acute radiation injury, and to evaluate the effect of Ligustrazine (Lt) on them. Methods: Fifty-six Kunming mice of clean grade were randomly divided into 3 groups, the normal group, the control group and the Lt group. Mice in the latter two groups were once homogeneously systemic irradiated with 6.0 Gy of 60 Co, with the absorption dose rate of 0. 56 Gy/min, then treated with saline (0.2 ml/ mice) or Lt (2 mg/mice) respectively, twice a day through gastrogavage for successive 13 days. Mice were sacrificed in batch on the 3rd, 7th and 14th day by cervical dislocation to collect the bilateral femoral bone marrow for preparing bone marrow mono-nuclear cell (BMMNC) suspension. The bFGFR expression on surface of BMMNC was determined by flow cytometry; and the bFGF expres-sion level in one side of femoral bone marrow tissue was detected by immunohistochemistry with SABC-AP assay. Results: The bFGF expression in bone marrow of mice on the 3rd, 7th and 14th day after acute radiation injury all were significantly lower than that of the normal mice (P<0.05 or P<0.01). The expressions of bFGF and bFGFR in the Lt group detected were significantly higher than that in the control group detected at the corresponding time points (P<0.05 or P < 0.01). Conclusion:By way of enhancing bFGF expression in bone marrow and bFGFR expression on surface of BMMNC to accelerate the repairing of hemopoietic micro-environment in bone marrow might be one of the mechanisms of Lt in promoting hemopoietic function reconstitution after acute radiation injury.Original article on CJITWM (Chin) 2004;24(5):439展开更多
文摘Objective: To study the expressions of basic fibroblast growth factor (bFGF) and its receptor (bFGFR) in bone marrow of mice with acute radiation injury, and to evaluate the effect of Ligustrazine (Lt) on them. Methods: Fifty-six Kunming mice of clean grade were randomly divided into 3 groups, the normal group, the control group and the Lt group. Mice in the latter two groups were once homogeneously systemic irradiated with 6.0 Gy of 60 Co, with the absorption dose rate of 0. 56 Gy/min, then treated with saline (0.2 ml/ mice) or Lt (2 mg/mice) respectively, twice a day through gastrogavage for successive 13 days. Mice were sacrificed in batch on the 3rd, 7th and 14th day by cervical dislocation to collect the bilateral femoral bone marrow for preparing bone marrow mono-nuclear cell (BMMNC) suspension. The bFGFR expression on surface of BMMNC was determined by flow cytometry; and the bFGF expres-sion level in one side of femoral bone marrow tissue was detected by immunohistochemistry with SABC-AP assay. Results: The bFGF expression in bone marrow of mice on the 3rd, 7th and 14th day after acute radiation injury all were significantly lower than that of the normal mice (P<0.05 or P<0.01). The expressions of bFGF and bFGFR in the Lt group detected were significantly higher than that in the control group detected at the corresponding time points (P<0.05 or P < 0.01). Conclusion:By way of enhancing bFGF expression in bone marrow and bFGFR expression on surface of BMMNC to accelerate the repairing of hemopoietic micro-environment in bone marrow might be one of the mechanisms of Lt in promoting hemopoietic function reconstitution after acute radiation injury.Original article on CJITWM (Chin) 2004;24(5):439