This article presents illustrations of an extended model of the electron to visualize how it spins and radiates in the external magnetic field. A time-varying magnetic field B produces a rotational induced electric fi...This article presents illustrations of an extended model of the electron to visualize how it spins and radiates in the external magnetic field. A time-varying magnetic field B produces a rotational induced electric field E which rotates (spins) the electron about its axis. In time-constant magnetic field: the electron radiates the cyclotron radiation. In time-varying magnetic field: synchrotron radiation is generated. The couplings between spin, acceleration and radiation will be discussed.展开更多
Laminar natural convection is studied in a square cavity filled with air whose two vertical sides are subject to a temperature difference, while the other two horizontal sides are adiabatic. The hot and cold wall temp...Laminar natural convection is studied in a square cavity filled with air whose two vertical sides are subject to a temperature difference, while the other two horizontal sides are adiabatic. The hot and cold wall temperatures are kept constant. We have presented a dynamic and thermal study of pure natural convection for different values of the Rayleigh number. The numerical simulation was carried out for Rayleigh numbers ranging from 10<sup>2</sup>, 10<sup>3</sup>, …, 10<sup>5</sup> and the Prandtl number is Pr = 0.71. We used the COMSOL Multiphysic 5.1 software, which allows us to simultaneously solve the coupled physical phenomena in a square enclosure containing air under the Boussinesq approximation. For the coupling of natural convection with radiation from radiative surfaces, both horizontal faces are subjected to radiative flux, and the emissivity of the surfaces varies from ε = 0.1 to 0.8. We have seen that a circulation process is involved. The fluid that is subjected to a high temperature near the hot wall rises to the ceiling and the fluid near the cold wall sinks. This movement continues until the fluid reaches thermal equilibrium. In a natural convection-surface radiation coupling, simulation results indicate that radiative exchange decreases as a function of the Rayleigh number. Surface radiation reduces the flow in the cavity.展开更多
We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced ...We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced transparency (EIT) can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between left-hand and right-hand input (probe and coupling) fields. In particular, one perfect EIT window is seen to occur when the two probe fields are exactly out of phase and the EIT window's width is very sensitive to the relative intensity of two coupling fields. Our numerical findings may be extended to achieve optomechanical storage and switching schemes applicable in quantum information processing.展开更多
We present in this work a new mathematical model to analyze and evaluate optical phenomena occurring in the nonuniform optical waveguide used in integrated optics as an optical coupler. By introducing some modificatio...We present in this work a new mathematical model to analyze and evaluate optical phenomena occurring in the nonuniform optical waveguide used in integrated optics as an optical coupler. By introducing some modifications to the intrinsic integral, we perfectly assess the radiation field present in the adjacent medium of the waveguide and, thus, follow the evolution of the optical coupling from the taper thin film to the substrate and cladding until there is a total energy transfer. The new model that is introduced can be used to evaluate electromagnetic field distribution in three mediums that constitute any nonuniform optical couplers presenting great or low wedge angles.展开更多
The paper presents the variational formulation and well posedness of the coupling method offinite elements and boundary elements for radiation problem. The convergence and optimal errorestimate for the approximate sol...The paper presents the variational formulation and well posedness of the coupling method offinite elements and boundary elements for radiation problem. The convergence and optimal errorestimate for the approximate solution and numerical experiment are provided.展开更多
文摘This article presents illustrations of an extended model of the electron to visualize how it spins and radiates in the external magnetic field. A time-varying magnetic field B produces a rotational induced electric field E which rotates (spins) the electron about its axis. In time-constant magnetic field: the electron radiates the cyclotron radiation. In time-varying magnetic field: synchrotron radiation is generated. The couplings between spin, acceleration and radiation will be discussed.
文摘Laminar natural convection is studied in a square cavity filled with air whose two vertical sides are subject to a temperature difference, while the other two horizontal sides are adiabatic. The hot and cold wall temperatures are kept constant. We have presented a dynamic and thermal study of pure natural convection for different values of the Rayleigh number. The numerical simulation was carried out for Rayleigh numbers ranging from 10<sup>2</sup>, 10<sup>3</sup>, …, 10<sup>5</sup> and the Prandtl number is Pr = 0.71. We used the COMSOL Multiphysic 5.1 software, which allows us to simultaneously solve the coupled physical phenomena in a square enclosure containing air under the Boussinesq approximation. For the coupling of natural convection with radiation from radiative surfaces, both horizontal faces are subjected to radiative flux, and the emissivity of the surfaces varies from ε = 0.1 to 0.8. We have seen that a circulation process is involved. The fluid that is subjected to a high temperature near the hot wall rises to the ceiling and the fluid near the cold wall sinks. This movement continues until the fluid reaches thermal equilibrium. In a natural convection-surface radiation coupling, simulation results indicate that radiative exchange decreases as a function of the Rayleigh number. Surface radiation reduces the flow in the cavity.
基金supported by the National Natural Science Foundation of China(Grant No.61378094)
文摘We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced transparency (EIT) can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between left-hand and right-hand input (probe and coupling) fields. In particular, one perfect EIT window is seen to occur when the two probe fields are exactly out of phase and the EIT window's width is very sensitive to the relative intensity of two coupling fields. Our numerical findings may be extended to achieve optomechanical storage and switching schemes applicable in quantum information processing.
基金co-supported by the University of Sciences and Technology of Oran Mohamed Boudiaf (USTOMB) and the Centre of Satellites Development (CDS), Oran, Algeria
文摘We present in this work a new mathematical model to analyze and evaluate optical phenomena occurring in the nonuniform optical waveguide used in integrated optics as an optical coupler. By introducing some modifications to the intrinsic integral, we perfectly assess the radiation field present in the adjacent medium of the waveguide and, thus, follow the evolution of the optical coupling from the taper thin film to the substrate and cladding until there is a total energy transfer. The new model that is introduced can be used to evaluate electromagnetic field distribution in three mediums that constitute any nonuniform optical couplers presenting great or low wedge angles.
基金This research was supported in part by the Institute for Mathematics and its applications with funds provided by NSF, USA
文摘The paper presents the variational formulation and well posedness of the coupling method offinite elements and boundary elements for radiation problem. The convergence and optimal errorestimate for the approximate solution and numerical experiment are provided.