Radiation source identification plays an important role in non-cooperative communication scene and numerous methods have been proposed in this field. Deep learning has gained popularity in a variety of computer vision...Radiation source identification plays an important role in non-cooperative communication scene and numerous methods have been proposed in this field. Deep learning has gained popularity in a variety of computer vision tasks. Recently, it has also been successfully applied for radiation source identification.However, training deep neural networks for classification requires a large number of labeled samples, and in non-cooperative applications, it is unrealistic. This paper proposes a method for the unlabeled samples of unknown radiation source. It uses semi-supervised learning to detect unlabeled samples and label new samples automatically. It avoids retraining the neural network with parameter-transfer learning. The results show that compared with the traditional algorithms, the proposed algorithm can offer better accuracy.展开更多
基金supported by the National Key R&D Program of China (2018YFB2101300)。
文摘Radiation source identification plays an important role in non-cooperative communication scene and numerous methods have been proposed in this field. Deep learning has gained popularity in a variety of computer vision tasks. Recently, it has also been successfully applied for radiation source identification.However, training deep neural networks for classification requires a large number of labeled samples, and in non-cooperative applications, it is unrealistic. This paper proposes a method for the unlabeled samples of unknown radiation source. It uses semi-supervised learning to detect unlabeled samples and label new samples automatically. It avoids retraining the neural network with parameter-transfer learning. The results show that compared with the traditional algorithms, the proposed algorithm can offer better accuracy.