期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Modelling of Radiation-Convection Coupling of Greenhouse Using Underfloor Heating
1
作者 Yan Jia Can Wang +1 位作者 Chi Zhang Wenxiong Li 《Open Journal of Fluid Dynamics》 2017年第3期448-461,共14页
Greenhouse is an important place for crop growth, and it is necessary to control the temperature of growing environment in winter. In addition, the root temperature underground also plays a decisive role for plants gr... Greenhouse is an important place for crop growth, and it is necessary to control the temperature of growing environment in winter. In addition, the root temperature underground also plays a decisive role for plants growth. Adopting underground heating to increase the temperature can effectively improve the yield of crops. The objective of our study was to model the heat transfer of greenhouse underfloor heating which is analyzed and simplified based on the FLUENT software by changing the several important factors that affect the temperature distribution: pipe diameter, pipe spacing, laying depth, supplied water temperature and flow rate, as boundary conditions to simulate the changes of the soil temperature field around the winter night environment. Researching the temperature distribution of the greenhouse, the soil surface and the plant root layer under the different parameters and the basic rules of the heating system are summarized. The results show that the water supply temperature, pipe spacing and diameter of the pipe has a greater impact on the ground and room temperature, and the laying depth has greater impact on the temperature uniformity of the ground, the velocity of water in pipe has little impact on the uniformity of ground temperature. 展开更多
关键词 GREENHOUSE Underfloor HEATING radiation-convection COUPLING CFD
下载PDF
Thermodynamic Head Loss in a Channel with Combined Radiation and Convection Heat Transfer
2
作者 Deodat Makhanlall Peixue Jiang 《Journal of Power and Energy Engineering》 2014年第9期57-63,共7页
Losses in channel flows are usually determined using a frictional head loss parameter. Fluid friction is however not the only source of loss in channel flows with heat transfer. For such flow problems, thermal energy ... Losses in channel flows are usually determined using a frictional head loss parameter. Fluid friction is however not the only source of loss in channel flows with heat transfer. For such flow problems, thermal energy degradation, in addition to mechanical energy degradation, add to the total loss in thermodynamic head. To assess the total loss in a channel with combined convection and radiation heat transfer, the conventional frictional head loss parameter is extended in this study. The analysis is applied to a 3D turbulent channel flow and identifies the critical locations in the flow domain where the losses are concentrated. The influence of Boltzmann number is discussed, and the best channel geometry for flows with combined heat transfer modes is also determined. 展开更多
关键词 radiation-convection Heat TRANSFER THERMODYNAMIC Head LOSS ENTROPY Generation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部