Objective Our study aimed to analyze the expression of miR-564 and TGF-β1 in cancer tissues and the serum of patients with radiation-induced lung injury,and to investigate the relationship between them and radiation-...Objective Our study aimed to analyze the expression of miR-564 and TGF-β1 in cancer tissues and the serum of patients with radiation-induced lung injury,and to investigate the relationship between them and radiation-induced lung injury.Methods In situ hybridization and real-time fluorescence quantitative method were used to detect the expression of miR-564.Additionally,immunohistochemistry and enzyme-linked immunosorbent assay(ELISA)were performed to detect the expression of TGF-β1.Results The overall incidence of acute radiation pneumonia was 55.9%(100/179).The incidence of≥grade 2 radioactive pneumonia was 24.0%(43/179)and that of grade 1 was 31.8%(57/179).The expression of miR-564 in grade≥2 was slightly higher than that in patients without or with grade 1,but there was no statistical difference(P=0.86).The serum level and ratio of miR-564 in patients with grade≥2 were significantly higher than those without or with grade 1(P=0.005,P=0.025,respectively).The expression of TGF-β1 in grade≥2 was significantly higher than that of patients without or with grade 1(P=0.017).The serum levels of TGF-β1 in grade≥2 were significantly higher than those in patients without or with grade 1(P=0.038).Although the ratio of TGF-β1 in radiation pneumonia of grade≥2 was significantly higher than that of without or with grade 1,there was no significant difference(P=0.24).Moreover,patients with higher expression of miR-564 and lower expression of TGF-β1 had better prognosis.Conclusion MiR-564 and TGF-β1 are predictors of radiation-induced lung injury.Monitoring its changing trend can improve the accuracy of predicting radiation-induced lung injury.The levels and ratio of serum miR-564 and TGF-β1 in patients with radiation-induced lung injury are related to the severity of radiationinduced lung injury.展开更多
Objective: To evaluate the hydroxypiperquin phosphate (HPQP) as a modifier of radiation-induced injury in human and rat lungs. Methods: Sixty-five patients with lung cancer treated with conventional radiotherapy were ...Objective: To evaluate the hydroxypiperquin phosphate (HPQP) as a modifier of radiation-induced injury in human and rat lungs. Methods: Sixty-five patients with lung cancer treated with conventional radiotherapy were divided into 2 groups randomly: Thirty cases were treated with HPQP and the others were in a control group. The changes of X - ray manifestation before, after and during taking drug were compared. An animal model of radiation-induced fibrosis of lungs was also established. Hydroxyproling (HP) content in lung tissue and the pathological changes in rat lungs were checked with microscope and electron microscope after 4 months and 6 months respectively. Results: The changes of lung X-ray manifestation in treatment group were much lighter than that in control group. The HP content and the change of pathology in the lungs of those rats with HPQP treatment were obviously less than that in control group. Conclusion: HPQP plays an important role in prevention and treatment of radiation-induced injury in lungs.展开更多
Radiotherapy (RT) is a common and effective non-surgical treatment for thoracic solid tumors, and radiation-induced lung injury (RILI) is the most common side effect of radiotherapy. Even if RT is effective in the tre...Radiotherapy (RT) is a common and effective non-surgical treatment for thoracic solid tumors, and radiation-induced lung injury (RILI) is the most common side effect of radiotherapy. Even if RT is effective in the treatment of cancer patients, severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) can reduce the quality of life of patients and may even lead to serious consequences of death. Therefore, how to overcome the problem of accurate prediction and early diagnosis of RT for pulmonary toxicity is very important. This review summarizes the related factors of RILI and the related biomarkers for early prediction of RILI.展开更多
Background:To evaluate the utility of rabbit ladderlike model of radiation-induced lung injury (RILI) for the future investigation of computed tomography perfusion.Methods:A total of 72 New Zealand rabbits were ra...Background:To evaluate the utility of rabbit ladderlike model of radiation-induced lung injury (RILI) for the future investigation of computed tomography perfusion.Methods:A total of 72 New Zealand rabbits were randomly divided into two groups:36 rabbits in the test group were administered 25 Gy of single fractionated radiation to the whole lung of unilateral lung;36 rabbits in the control group were sham-radiated.All rabbits were subsequently sacrificed at 1,6,12,24,48,72 h,and 1,2,4,8,1 6,24 weeks after radiation,and then six specimens were extracted from the upper,middle and lower fields of the bilateral lungs.The pathological changes in these specimens were observed with light and electron microscopy;the expression of tumor necrosis factor-α (TNF-a) and transforming growth factor-βl (TGF-β1) in local lung tissue was detected by immunohistochemistry.Results:(1) Radiation-induced lung injury occurred in all rabbits in the test group.(2) Expression of TNF-a and TGF-β1 at 1 h and 48 h after radiation,demonstrated a statistically significant difference between the test and control groups (each P 〈 0.05).(3) Evaluation by light microscopy demonstrated statistically significant differences between the two groups in the following parameters (each P 〈 0.05):thickness of alveolar wall,density of pulmonary interstitium area (1 h after radiation),number offibroblasts and fibrocytes in interstitium (24 h after radiation).The test group metrics also correlated well with the time ofpostradiation.(4) Evaluation by electron microscopy demonstrated statistically significant differences in the relative amounts of collagen fibers at various time points postradiation in the test group (P 〈 0.005),with no significant differences in the control group (P 〉 0.05).At greater than 48 h postradiation the relative amount of collagen fibers in the test groups significantly differ from the control groups (each P 〈 0.05),correlating well with the time postradiation (r =0.99318).Conclusions:A consistent and reliable rabbit model of RILI can be generated in gradient using 25 Gy of high-energy X-ray,which can simulate the development and evolution of RILI.展开更多
基金Supported by grants from the Fundamental Research for South-Central University for Nationalities(No.PJS140011604)Chen Xiaoping Foundation Development of Science and Technology of Hubei(No.CXPJJH11800004-015)
文摘Objective Our study aimed to analyze the expression of miR-564 and TGF-β1 in cancer tissues and the serum of patients with radiation-induced lung injury,and to investigate the relationship between them and radiation-induced lung injury.Methods In situ hybridization and real-time fluorescence quantitative method were used to detect the expression of miR-564.Additionally,immunohistochemistry and enzyme-linked immunosorbent assay(ELISA)were performed to detect the expression of TGF-β1.Results The overall incidence of acute radiation pneumonia was 55.9%(100/179).The incidence of≥grade 2 radioactive pneumonia was 24.0%(43/179)and that of grade 1 was 31.8%(57/179).The expression of miR-564 in grade≥2 was slightly higher than that in patients without or with grade 1,but there was no statistical difference(P=0.86).The serum level and ratio of miR-564 in patients with grade≥2 were significantly higher than those without or with grade 1(P=0.005,P=0.025,respectively).The expression of TGF-β1 in grade≥2 was significantly higher than that of patients without or with grade 1(P=0.017).The serum levels of TGF-β1 in grade≥2 were significantly higher than those in patients without or with grade 1(P=0.038).Although the ratio of TGF-β1 in radiation pneumonia of grade≥2 was significantly higher than that of without or with grade 1,there was no significant difference(P=0.24).Moreover,patients with higher expression of miR-564 and lower expression of TGF-β1 had better prognosis.Conclusion MiR-564 and TGF-β1 are predictors of radiation-induced lung injury.Monitoring its changing trend can improve the accuracy of predicting radiation-induced lung injury.The levels and ratio of serum miR-564 and TGF-β1 in patients with radiation-induced lung injury are related to the severity of radiationinduced lung injury.
文摘Objective: To evaluate the hydroxypiperquin phosphate (HPQP) as a modifier of radiation-induced injury in human and rat lungs. Methods: Sixty-five patients with lung cancer treated with conventional radiotherapy were divided into 2 groups randomly: Thirty cases were treated with HPQP and the others were in a control group. The changes of X - ray manifestation before, after and during taking drug were compared. An animal model of radiation-induced fibrosis of lungs was also established. Hydroxyproling (HP) content in lung tissue and the pathological changes in rat lungs were checked with microscope and electron microscope after 4 months and 6 months respectively. Results: The changes of lung X-ray manifestation in treatment group were much lighter than that in control group. The HP content and the change of pathology in the lungs of those rats with HPQP treatment were obviously less than that in control group. Conclusion: HPQP plays an important role in prevention and treatment of radiation-induced injury in lungs.
文摘Radiotherapy (RT) is a common and effective non-surgical treatment for thoracic solid tumors, and radiation-induced lung injury (RILI) is the most common side effect of radiotherapy. Even if RT is effective in the treatment of cancer patients, severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) can reduce the quality of life of patients and may even lead to serious consequences of death. Therefore, how to overcome the problem of accurate prediction and early diagnosis of RT for pulmonary toxicity is very important. This review summarizes the related factors of RILI and the related biomarkers for early prediction of RILI.
基金This work was supported by the National Natural Science Foundation of China (NSFC) grants (Youth Fund, No. 81101043 ), Jiangsu Province Natural Science Foundation (No. BK2011178), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD 2011-0318), and Key Project of Nanjing Medical University Technology Development Fund (No. 2008NMUZ051).
文摘Background:To evaluate the utility of rabbit ladderlike model of radiation-induced lung injury (RILI) for the future investigation of computed tomography perfusion.Methods:A total of 72 New Zealand rabbits were randomly divided into two groups:36 rabbits in the test group were administered 25 Gy of single fractionated radiation to the whole lung of unilateral lung;36 rabbits in the control group were sham-radiated.All rabbits were subsequently sacrificed at 1,6,12,24,48,72 h,and 1,2,4,8,1 6,24 weeks after radiation,and then six specimens were extracted from the upper,middle and lower fields of the bilateral lungs.The pathological changes in these specimens were observed with light and electron microscopy;the expression of tumor necrosis factor-α (TNF-a) and transforming growth factor-βl (TGF-β1) in local lung tissue was detected by immunohistochemistry.Results:(1) Radiation-induced lung injury occurred in all rabbits in the test group.(2) Expression of TNF-a and TGF-β1 at 1 h and 48 h after radiation,demonstrated a statistically significant difference between the test and control groups (each P 〈 0.05).(3) Evaluation by light microscopy demonstrated statistically significant differences between the two groups in the following parameters (each P 〈 0.05):thickness of alveolar wall,density of pulmonary interstitium area (1 h after radiation),number offibroblasts and fibrocytes in interstitium (24 h after radiation).The test group metrics also correlated well with the time ofpostradiation.(4) Evaluation by electron microscopy demonstrated statistically significant differences in the relative amounts of collagen fibers at various time points postradiation in the test group (P 〈 0.005),with no significant differences in the control group (P 〉 0.05).At greater than 48 h postradiation the relative amount of collagen fibers in the test groups significantly differ from the control groups (each P 〈 0.05),correlating well with the time postradiation (r =0.99318).Conclusions:A consistent and reliable rabbit model of RILI can be generated in gradient using 25 Gy of high-energy X-ray,which can simulate the development and evolution of RILI.