期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
A Multi-Domain Compression Radiative Transfer Model for the Fengyun-4 Geosynchronous Interferometric Infrared Sounder (GIIRS) 被引量:1
1
作者 Mingyue SU Chao LIU +6 位作者 Di DI Tianhao LE Yujia SUN Jun LI Feng LU Peng ZHANG Byung-Ju SOHN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1844-1858,共15页
Forward radiative transfer(RT)models are essential for atmospheric applications such as remote sensing and weather and climate models,where computational efficiency becomes equally as important as accuracy for high-re... Forward radiative transfer(RT)models are essential for atmospheric applications such as remote sensing and weather and climate models,where computational efficiency becomes equally as important as accuracy for high-resolution hyperspectral measurements that need rigorous RT simulations for thousands of channels.This study introduces a fast and accurate RT model for the hyperspectral infrared(HIR)sounder based on principal component analysis(PCA)or machine learning(i.e.,neural network,NN).The Geosynchronous Interferometric Infrared Sounder(GIIRS),the first HIR sounder onboard the geostationary Fengyun-4 satellites,is considered to be a candidate example for model development and validation.Our method uses either PCA or NN(PCA/NN)twice for the atmospheric transmittance and radiance,respectively,to reduce the number of independent but similar simulations to accelerate RT simulations;thereby,it is referred to as a multi-domain compression model.The first PCA/NN gives monochromatic gas transmittance in both spectral and atmospheric pressure domains for each gas independently.The second PCA/NN is performed in the traditional spectral radiance domain.Meanwhile,a new method is introduced to choose representative variables for the PCA/NN scheme developments.The model is three orders of magnitude faster than the standard line-by-line-based simulations with averaged brightness temperature difference(BTD)less than 0.1 K,and the compressions based on PCA or NN methods result in comparable efficiency and accuracy.Our fast model not only avoids an excessively complicated transmittance scheme by using PCA/NN but is also highly flexible for hyperspectral instruments with similar spectral ranges simply by updating the corresponding spectral response functions. 展开更多
关键词 radiative transfer model principal component analysis machine learning GIIRS
下载PDF
A Simplified Scheme of the Generalized Layered Radiative Transfer Model 被引量:2
2
作者 戴秋丹 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第2期213-226,共14页
In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted ... In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittance βb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance), transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance) the canopy and other properties pertinent to the radiative transfer within the canopy can be estimated easily on the ground surface below the canopy (soil or snow surface) with any reflectance magnitudes. The simplified transfer model is proven to have a similar accuracy compared to the detailed model, as well as very efficient computing. 展开更多
关键词 generalized layered canopy radiative transfer model simplified model analytical solutions basic solutions adaxial abaxial leaf optical properties
下载PDF
Microwave Simulations of Precipitation Distribution with Two Radiative Transfer Models
3
作者 刘锦丽 林龙福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第4期470-478,共9页
Two microwave radiative transfer models of precipitating cloud are used to simulate the microwave upwelling radiances emerging from precipitating clouds. Comparison of the simulation results shows that significant dif... Two microwave radiative transfer models of precipitating cloud are used to simulate the microwave upwelling radiances emerging from precipitating clouds. Comparison of the simulation results shows that significant difference of microwave upwelling radiances exists between these two radiative transfer models. Analysis of these differences in different cloud and precipitation conditions shows that it is complicated but has certain trend for different microwave frequencies. The results may be useful to quantitative rainfall rate retrieval of real precipitating clouds. 展开更多
关键词 radiative transfer models PRECIPITATION Brightness temperature
下载PDF
Research on the Application of the Radiative Transfer Model Based on Deep Neural Network in One-dimensional Variational Algorithm
4
作者 贺秋瑞 张瑞玲 +1 位作者 李骄阳 王振占 《Journal of Tropical Meteorology》 SCIE 2022年第3期326-342,共17页
As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important pos... As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing.Among algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric parameters.In this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles.In this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences. 展开更多
关键词 one-dimensional variational algorithm radiative transfer model deep neural network FY-3 MWHTS temperature and humidity profiles
下载PDF
Machine learning methods’ performance in radiative transfer model inversion to retrieve plant traits from Sentinel-2 data of a mixed mountain forest 被引量:3
5
作者 Abebe Mohammed Ali Roshanak Darvishzadeh +2 位作者 Andrew Skidmore Tawanda W.Gara Marco Heurich 《International Journal of Digital Earth》 SCIE 2021年第1期106-120,共15页
Assessment of vegetation biochemical and biophysical variables is useful when developing indicators for biodiversity monitoring and climate change studies.Here,we compared a radiative transfer model(RTM)inversion by m... Assessment of vegetation biochemical and biophysical variables is useful when developing indicators for biodiversity monitoring and climate change studies.Here,we compared a radiative transfer model(RTM)inversion by merit function and five machine learning algorithms trained on an RTM simulated dataset predicting the three plant traits leaf chlorophyll content(LCC),canopy chlorophyll content(CCC),and leaf area index(LAI),in a mixed temperate forest.The accuracy of the retrieval methods in predicting these three plant traits with spectral data from Sentinel-2 acquired on 13 July 2017 over Bavarian Forest National Park,Germany,was evaluated using in situ measurements collected contemporaneously.The RTM inversion using merit function resulted in estimations of LCC(R^(2)=0.26,RMSE=3.9µg/cm^(2)),CCC(R^(2)=0.65,RMSE=0.33 g/m^(2)),and LAI(R^(2)=0.47,RMSE=0.73 m^(2)/m^(2)),comparable to the estimations based on the machine learning method Random forest regression of LCC(R^(2)=0.34,RMSE=4.06µg/cm^(2)),CCC(R^(2)=0.65,RMSE=0.34 g/m^(2)),and LAI(R^(2)=0.47,RMSE=0.75 m^(2)/m^(2)).Several of the machine learning algorithms also yielded accuracies and robustness similar to the RTM inversion using merit function.The performance of regression methods trained on synthetic datasets showed promise for fast and accurate mapping of plant traits accross different plant functional types from remote sensing data. 展开更多
关键词 Leaf area index leaf/canopy chlorophyll content radiative transfer model look-up table machine learning algorithms
原文传递
An accurate and efficient radiative transfer model for simulating all-sky images from Fengyun satellite radiometers 被引量:1
6
作者 Bin YAO Chao LIU +4 位作者 Shiwen TENG Lei BI Zhiqing ZHANG Peng ZHANG Byung-Ju SOHN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第11期1701-1713,共13页
Forward radiative transfer models(RTM)are an indispensable tool for quantitative applications of satellite radiometers,e.g.,for data calibration,instrument development,retrieval,and so on.In this study,we develop an a... Forward radiative transfer models(RTM)are an indispensable tool for quantitative applications of satellite radiometers,e.g.,for data calibration,instrument development,retrieval,and so on.In this study,we develop an accurate and efficient RTM for radiometers onboard Fengyun satellites,namely FYRTM(RTM for Fengyun Radiometers).Correlated k-distribution models are developed to improve the computational efficiency for gas absorption,and the effects of cloud and aerosol multiple scattering and emission are accelerated with pre-computed look-up tables.FYRTM is evaluated with a rigorous simulation based on discrete ordinate radiative transfer model(DISORT)as well as a popular fast forward model,i.e.,the Community Radiative Transfer Model(CRTM).Results indicate that FYRTM-based simulations are two to three orders of magnitudes faster than the DISORT-based simulations.Compared to the rigorous model,FYRTM relative errors are within 2%at solar channels,and brightness temperatures(BT)differences are within 1 K at infrared channels.Compared with CRTM,FYRTM is computationally similar at solar channels,but three times faster at infrared channels.Furthermore,simulated reflectances/BTs using FYRTM are in a good agreement with the satellite observations.Overall,FYRTM is capable to simulate satellite observations under different atmospheric conditions,and can be extended to other radiometers onboard the Fengyun satellites(both geostationary and polarorbiting satellites).It is expected to play important roles in future applications with Fengyun observations. 展开更多
关键词 radiative transfer model Fengyun satellites Cloud and aerosol
原文传递
Fractional vegetation cover estimation in heterogeneous areas by combining a radiative transfer model and a dynamic vegetation model 被引量:1
7
作者 Yixuan Tu Kun Jia +3 位作者 Shunlin Liang Xiangqin Wei Yunjun Yao Xiaotong Zhang 《International Journal of Digital Earth》 SCIE 2020年第4期487-503,共17页
A fractional vegetation cover(FVC)estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed,which was suitable for FVC estimation in homogeneous areas because th... A fractional vegetation cover(FVC)estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed,which was suitable for FVC estimation in homogeneous areas because the finer-resolution pixels corresponding to one coarseresolution FVC pixel were all assumed to have the same vegetation growth model.However,this assumption does not hold over heterogeneous areas,meaning that the method cannot be applied to large regions.Therefore,this study proposes a finer spatial resolution FVC estimation method applicable to heterogeneous areas using Landsat 8 Operational Land Imager reflectance data and Global LAnd Surface Satellite(GLASS)FVC product.The FVC product was first decomposed according to the normalized difference vegetation index from the Landsat 8 OLI data.Then,independent dynamic vegetation models were built for each finer-resolution pixel.Finally,the dynamic vegetation model and a radiative transfer model were combined to estimate FVC at the Landsat 8 scale.Validation results indicated that the proposed method(R^(2)=0.7757,RMSE=0.0881)performed better than either the previous method(R^(2)=0.7038,RMSE=0.1125)or a commonly used method involving look-up table inversions of the PROSAIL model(R^(2)=0.7457,RMSE=0.1249). 展开更多
关键词 Dynamic Bayesian network fractional vegetation cover global land surface satellite radiative transfer model dynamic vegetation model
原文传递
NUMERICAL MODELING OF RADIATIVE TRANSFER FOR MICROWAVE REMOTE SENSING
8
作者 Jin Yaqiu, Zhang Jurong, Zhao Renyu (Department of Electronic Engineering, Fudan University) (Changchun Institute of Geography, Academia Sinica) 《遥感信息》 CSCD 1990年第A02期30-31,共2页
An overall vector radiative transfer theory was developed for numerical modeling, in both active and passive microwave remote sensing. The Theory and approaches are briefly summerized.To quantitatively understand scat... An overall vector radiative transfer theory was developed for numerical modeling, in both active and passive microwave remote sensing. The Theory and approaches are briefly summerized.To quantitatively understand scattering and thermal emission from targets in active and passive remote sensing, we have developed an overall vector radiative transfer theory for a set of theoretical models of discrete scatterer and continuous random media for the earth terrain (wet soil, vegetation, snow, sea-ice, etc.) and atmosphere, and numerical approaches for simulation, data analysis, and parameter sensitivity test. Our numerical results favorably agreed with experimental data in microwave re mote sensing of various earth surfaces. Main approaches are briefly summerized herewith. 展开更多
关键词 VRT NUMERICAL modelING OF radiative transfer FOR MICROWAVE REMOTE SENSING
下载PDF
A Comparison of Two Canopy Radiative Models in Land Surface Processes 被引量:1
9
作者 戴秋丹 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期421-434,共14页
This paper compares the predictions by two radiative transfer models-the two-stream approximation model and the generalized layered model (developed by the authors) in land surface processes -for different canopies ... This paper compares the predictions by two radiative transfer models-the two-stream approximation model and the generalized layered model (developed by the authors) in land surface processes -for different canopies under direct or diffuse radiation conditions. The comparison indicates that there are significant differences between the two models, especially in the near infrared (NIR) band. Results of canopy reflectance from the two-stream model are larger than those from the generalized model. However, results of canopy absorptance from the two-stream model are larger in some cases and smaller in others compared to those from the generalized model, depending on the cases involved. In the visible (VIS) band, canopy reflectance is smaller and canopy absorptance larger from the two-stream model compared to the generalized model when the Leaf Area Index (LAI) is low and soil reflectance is high. In cases of canopies with vertical leaf angles, the differences of reflectance and absorptance in the VIS and NIR bands between the two models are especially large. Two commonly occurring cases, with which the two-stream model cannot deal accurately, are also investigated. One is for a canopy with different adaxial and abaxial leaf optical properties; and the other is for incident sky diffuse radiation with a non-uniform distribution. Comparison of the generalized model within the same canopy for both uniform and non-uniform incident diffuse radiation inputs shows smaller differences in general. However, there is a measurable difference between these radiation inputs for a canopy with high leaf angle. This indicates that the application of the two-stream model to a canopy with different adaxial and abaxial leaf optical properties will introduce non-negligible errors. 展开更多
关键词 generalized canopy radiative transfer model two-stream approximation model canopy reflectance canopy absorptance
下载PDF
Consistency of Tropospheric Water Vapor between Reanalyses and Himawari-8/AHI Measurements over East Asia
10
作者 Di DI Jun LI +3 位作者 Yunheng XUE Min MIN Bo LI Zhenglong LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期19-38,共20页
High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets t... High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets to depict multilayer tropospheric water vapor(WV),thereby enhancing our understanding of the deficiencies of WV in reanalysis datasets.Based on daily measurements from the Advanced Himawari Imager(AHI)onboard the Himawari-8 satellite in 2016,the bias features of multilayer WV from six reanalysis datasets over East Asia are thoroughly evaluated.The assessments show that wet biases exist in the upper troposphere in all six reanalysis datasets;in particular,these biases are much larger in summer.Overall,we find better depictions of WV in the middle troposphere than in the upper troposphere.The accuracy of WV in the ERA5 dataset is the highest,in terms of the bias magnitude,dispersion,and pattern similarity.The characteristics of the WV bias over the Tibetan Plateau are significantly different from those over other parts of East Asia.In addition,the reanalysis datasets all capture the shift of the subtropical high very well,with ERA5 performing better overall. 展开更多
关键词 AHI reanalysis dataset multilayer water vapor assessment radiative transfer model
下载PDF
CFD study of non-premixed swirling burners: Effect of turbulence models 被引量:1
11
作者 Erfan Khodabandeh Hesam Moghadasi +4 位作者 Mohsen Saffari Pour Mikael Ersson Par G.Jonsson Marc A.Rosen Alireza Rahbari 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1029-1038,共10页
This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress mod... This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress model,spectral turbulence analysis and Re-Normalization Group.In addition,the P-1 and discrete ordinate(DO)models are used to simulate the radiative heat transfer in this model.The governing equations associated with the required boundary conditions are solved using the numerical model.The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities.Among different models proposed in this research,the Reynolds stress model with the Probability Density Function(PDF)approach is more accurate(nearly up to 50%)than other turbulent models for a swirling flow field.Regarding the effect of radiative heat transfer model,it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior.This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion. 展开更多
关键词 Computational Fluid Dynamics(CFD) Turbulent combustion Non-premixed flames Large eddy simulations radiative heat transfer model modeling validation
下载PDF
Four-stream Radiative Transfer Parameterization Scheme in a Land Surface Process Model 被引量:3
12
作者 周文艳 郭品文 +3 位作者 罗勇 Kuo-Nan LIOU Yu GU Yongkang XUE 《Acta meteorologica Sinica》 SCIE 2009年第1期105-115,共11页
Accurate estimates of albedos are required in climate modeling. Accurate and simple schemes for radiative transfer within canopy are required for these estimates, but severe limitations exist. This paper developed a f... Accurate estimates of albedos are required in climate modeling. Accurate and simple schemes for radiative transfer within canopy are required for these estimates, but severe limitations exist. This paper developed a four-stream solar radiative transfer model and coupled it with a land surface process model. The radiative model uses a four-stream approximation method as in the atmosphere to obtain analytic solutions of the basic equation of canopy radiative transfer. As an analytical model, the four-stream radiative transfer model can be easily applied efficiently to improve the parameterization of land surface radiation in climate models. Our four-stream solar radiative transfer model is based on a two-stream short wave radiative transfer model. It can simulate short wave solar radiative transfer within canopy according to the relevant theory in the atmosphere. Each parameter of the basic radiative transfer equation of canopy has special geometry and optical characters of leaves or canopy. The upward or downward radiative fluxes are related to the diffuse phase function, the G-function, leaf reflectivity and transmission, leaf area index, and the solar angle of the incident beam. The four-stream simulation is compared with that of the two-stream model. The four-stream model is proved successful through its consistent modeling of canopy albedo at any solar incident angle. In order to compare and find differences between the results predicted by the four- and two-stream models, a number of numerical experiments are performed through examining the effects of different leaf area indices, leaf angle distributions, optical properties of leaves, and ground surface conditions on the canopy albedo. Parallel experiments show that the canopy albedos predicted by the two models differ significantly when the leaf angle distribution is spherical and vertical. The results also show that the difference is particularly great for different incident solar beams. One additional experiment is carried out to evaluate the simulations of the BATS land surface model coupled with the two- and four-stream radiative transfer models. Station observations in 1998 are used for comparison. The results indicate that the simulation of BATS coupled with the four-stream model is the best because the surface absorbed solar radiation from the four-stream model is the closest to the observation. 展开更多
关键词 radiative transfer equation four-stream approximation four-stream radiative transfer model
原文传递
Modeling three-dimensional forest structures to drive canopy radiative transfer simulations of bidirectional reflectance factor
13
作者 Wei Yang Hideki Kobayashi +3 位作者 Xuehong Chen Kenlo Nishida Nasahara Rikie Suzuki Akihiko Kondoh 《International Journal of Digital Earth》 SCIE EI 2018年第10期981-1000,共20页
Three-dimensional(3-D)Monte Carlo-based radiative transfer(MCRT)models are usually used for benchmarking in intercomparisons of the canopy radiative transfer(RT)simulations.However,the 3-D MCRT models are rarely appli... Three-dimensional(3-D)Monte Carlo-based radiative transfer(MCRT)models are usually used for benchmarking in intercomparisons of the canopy radiative transfer(RT)simulations.However,the 3-D MCRT models are rarely applied to develop remote sensing algorithms to estimate essential climate variables of forests,due mainly to the difficulties in obtaining realistic stand structures for different forest biomes over regional to global scales.Fortunately,some of important tree structure parameters such as canopy height and tree density distribution have been available globally.This enables to run the intermediate complexities of the 3-D MCRT models.We consequently developed a statistical approach to generate forest structures with intermediate complexities depending on the inputs of canopy height and tree density.It aims at facilitating applications of the 3-D MCRT models to develop remote sensing retrieval algorithms.The proposed approach was evaluated using field measurements of two boreal forest stands at Estonia and USA,respectively.Results demonstrated that the simulations of bidirectional reflectance factor(BRF)based on the measured forest structures agreed well with the BRF based on the generated structures from the proposed approach with the root mean square error(RMSE)and relative RMSE(rRMSE)ranging from 0.002 to 0.006 and from 0.7%to 19.8%,respectively.Comparison of the computed BRF with corresponding MODIS reflectance data yielded RMSE and rRMSE lower than 0.03 and 20%,respectively.Although the results from the current study are limited in two boreal forest stands,our approach has the potential to generate stand structures for different forest biomes. 展开更多
关键词 Bidirectional reflectance factor remote sensing forest structure radiative transfer model
原文传递
Modeling Study of the Global Distribution of Radiative Forcing by Dust Aerosol 被引量:5
14
作者 张华 马井会 郑有飞 《Acta meteorologica Sinica》 SCIE 2010年第5期558-570,共13页
To quantitatively understand the dust aerosol effects on climate change, we calculated the global dis-tribution of direct radiative forcing due to dust aerosol under clear and cloudy skies in both winter and summer, b... To quantitatively understand the dust aerosol effects on climate change, we calculated the global dis-tribution of direct radiative forcing due to dust aerosol under clear and cloudy skies in both winter and summer, by using an improved radiative transfer model and the global distribution of dust mass concentra-tion given by GADS (Global Aerosol Data Set). The results show that the global means of the solar forcing due to dust aerosol at the tropopause for winter and summer are -0.48 and -0.50 W m-2, respectively; the corresponding values for the longwave forcing due to dust are 0.11 and 0.09 W m-2, respectively. At the surface, the global means of the solar forcing clue to dust are -1.36 W m-2 for winter and -1.56 W m-2 for summer, whereas the corresponding values for the longwave forcing are 0.27 and 0.23 W m-2, respectively. This work points out that the absolute values of the solar forcing due to dust aerosol at both the tropopause and surface increase linearly with the cosine of solar zenith angle and surface albedo. The solar zenith angle influences both the strength and distribution of the solar forcing greatly. Clouds exert great effects on the direct radiative forcing of dust, depending on many factors including cloud cover, cloud height, cloud water path, surface albedo, solar zenith angle, etc. The effects of low clouds and middle clouds are larger than those of high clouds. The existence of clouds reduces the longwave radiative forcing at the tropopause, where the influences of low clouds are the most obvious. Therefore, the impacts of clouds should not be ignored when estimating the direct radiative forcing due to dust aerosol. 展开更多
关键词 dust aerosol radiative forcing radiative transfer model surface albedo zenith angle CLOUDS
原文传递
An improved QuikSCAT wind retrieval algorithm and eye locating for typhoon 被引量:1
15
作者 ZHONG Jian FEI Jianfang +2 位作者 HUANG Sixun DU Huadong ZHANG Liang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第1期41-50,共10页
This paper proposes a rain considered geophysical model function (GMF), to be noted as GMF plus Rain. GMF plus Rain is based on the basic raidative transfer model with attenuation and scattering effects of rain on r... This paper proposes a rain considered geophysical model function (GMF), to be noted as GMF plus Rain. GMF plus Rain is based on the basic raidative transfer model with attenuation and scattering effects of rain on radar signal considered. Combined with the NSCAT2 GMF and the rain correction model, the GMF plus Rain model is used to retrieve the ocean wind vectors from the collocated QuikSCAT and SSM/I rain rate data for typhoon Melor. The resulting wind speed estimates of typhoon Melor show improved agreement with the wind fields derived from the best track analysis of Japan Meteorological Agency (JMA). The results imply that compared with the GMF model, the GMF plus Rain model can improve the precision of wind retrieval under the rain condition. Then, a new general algorithm of locating the eye of typhoon through the normalized radar cross section (NRCS) is proposed. The implementation of this algorithm in the ten QuikSCAT observations of typhoon Melor suggests that this algorithm is effective. 展开更多
关键词 SCATTEROMETER radiative transfer model typhoon wind field locating the eye of typhoon
下载PDF
Efficient Application of the Radiance Enhancement Method for Detection of the Forest Fires Due to Combustion-Originated Reflectance 被引量:1
16
作者 Rehan Siddiqui Rajinder K. Jagpal +1 位作者 Sanjar M. Abrarov Brendan M. Quine 《Journal of Environmental Protection》 2021年第10期717-733,共17页
The existing methods for detection of the cloud scenes are applied at relatively small spectral range within shortwave upwelling radiative wavelength flux. We have reported a new method for detection of the cloud scen... The existing methods for detection of the cloud scenes are applied at relatively small spectral range within shortwave upwelling radiative wavelength flux. We have reported a new method for detection of the cloud scenes based on the Radiance Enhancement (RE). This method can be used to cover a significantly wider spectral range from 1100 nm to 1700 nm by using datasets from the space-orbiting micro-spectrometer Argus 1000. Due to high sunlight reflection of the smoke originated from the forest or field fires the proposed RE method can also be implemented for detection of combustion aerosols. This approach can be a promising technique for efficient detection and continuous monitor of the seasonal forest and field fires. To the best of our knowledge this is the first report showing how a cloud method can be generalized for efficient detection of the forest fires due to combustion-originated reflectance. 展开更多
关键词 Radiance Enhancement CLOUDS Forest Fire radiative transfer model Line-By-Line Calculation MICRO-SPECTROMETER
下载PDF
Effect of the Instrument Slit Function on Upwelling Radiance from a Wavelength Dependent Surface Reflectance
17
作者 Rajinder K. Jagpal Rehan Siddiqui +1 位作者 Sanjar M. Abrarov Brendan M. Quine 《Natural Science》 2022年第3期133-147,共15页
The Radiance Enhancement (RE) method was introduced for efficient detection of clouds from the space. Recently, we have also reported that due to high reflectance of combustion-originated smokes, this approach can als... The Radiance Enhancement (RE) method was introduced for efficient detection of clouds from the space. Recently, we have also reported that due to high reflectance of combustion-originated smokes, this approach can also be generalized for detection of the forest fires by retrieving and analyzing datasets collected from a space orbiting micro-spectrometer operating in the near infrared spectral range. In our previous publication, we have performed a comparison of observed and synthetic radiance spectra by developing a method for computation of surface reflectance consisting of different canopies by weighted sum based on their areal coverage. However, this approach should be justified by a method based on corresponding proportions of the upwelling radiance. The results of computations we performed in this study reveal a good match between areal coverage of canopies and the corresponding proportions of the upwelling radiance due to effect of the instrument slit function. 展开更多
关键词 Radiance Enhancement Upwelling Radiance Line-by-Line Computation radiative transfer model
下载PDF
Aerosol optical properties and its direct radiative forcing over Tibetan Plateau from 2006 to 2017
18
作者 Hongru Bi Siyu Chen +3 位作者 Dan Zhao Fuquan Lu Yu Chen Yawen Guan 《Particuology》 SCIE EI CAS CSCD 2023年第3期64-73,共10页
Studies on optical properties of aerosols can reduce the uncertainty for modelling direct radiative forcing(DRF)and improve the accuracy for discussing aerosols effects on the Tibetan Plateau(TP)climate.This study inv... Studies on optical properties of aerosols can reduce the uncertainty for modelling direct radiative forcing(DRF)and improve the accuracy for discussing aerosols effects on the Tibetan Plateau(TP)climate.This study investigated the spatiotemporal variation of aerosol optical and microphysical properties over TP based on OMI and MERRA2,and assessed the influence of aerosol optical properties on DRF at NamCo station(30°46.44′N,90°59.31′E,4730 m)in the central TP from 2006 to 2017 based on a long measurement of AERONET and the modelling of SBDART model.The results show that aerosol optical depth(AOD)exhibits obvious seasonal variation over TP,with higher AOD500nm(>0.75)during spring and summer,and lower value(<0.25)in autumn and winter.The aerosol concentrations show a fluctuated rising from 1980 to 2000,significant increasing from 2000 to 2010 and slight declining trend after 2013.Based on sensitivity experiments,it is found that AOD and single scattering albedo(SSA)have more important impact on the DRF compared withαvalues and ASY.When AOD440nm increases by 60%,DRF at the TOA and ATM is increased by 57.2%and 60.2%,respectively.When SSA440nm increases by 20%,DRF at the TOA and ATM decreases by 121%and 96.7%,respectively. 展开更多
关键词 Direct radiative forcing Aerosol optical depth Single scattering albedo Santa Barbara DISORT Atmospheric radiative transfer model Tibetan plateau
原文传递
Real-time 3-D space numerical shake prediction for earthquake early warning 被引量:2
19
作者 Tianyun Wang Xing Jin +1 位作者 Yandan Huang Yongxiang Wei 《Earthquake Science》 CSCD 2017年第5期269-281,共13页
In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of sour... In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model. 展开更多
关键词 Real-time numerical shake prediction· 3-Dspace model · radiative transfer theory · Data assimilation
下载PDF
Real-time numerical shake prediction and updating for earthquake early warning
20
作者 Tianyun Wang Xing Jin +1 位作者 Yongxiang Wei Yandan Huang 《Earthquake Science》 CSCD 2017年第5期251-267,共17页
Ground motion prediction is important for earthquake early warning systems, because the region's peak ground motion indicates the potential disaster. In order to predict the peak ground motion quickly and pre- cisely... Ground motion prediction is important for earthquake early warning systems, because the region's peak ground motion indicates the potential disaster. In order to predict the peak ground motion quickly and pre- cisely with limited station wave records, we propose a real- time numerical shake prediction and updating method. Our method first predicts the ground motion based on the ground motion prediction equation after P waves detection of several stations, denoted as the initial prediction. In order to correct the prediction error of the initial prediction, an updating scheme based on real-time simulation of wave propagation is designed. Data assimilation technique is incorporated to predict the distribution of seismic wave energy precisely. Radiative transfer theory and Monte Carlo simulation are used for modeling wave propagation in 2-D space, and the peak ground motion is calculated as quickly as possible. Our method has potential to predict shakemap, making the potential disaster be predicted before the real disaster happens. 2008 Ms8.0 Wenchuan earthquake is studied as an example to show the validity of the proposed method. 展开更多
关键词 Real-time numerical shake prediction· 2-Dspace model · radiative transfer theory · Dataassimilation · Shakemap prediction
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部