This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf...This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.展开更多
In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns...In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.展开更多
Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can...Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation(DNS) is performed in this study to explore the mechanisms of heat transfer enhancement(HTE) and flow drag reduction(DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton–Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows.展开更多
Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Vi...Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, KS, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution.展开更多
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo...For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.展开更多
In this paper, a numerical simulation has been carried out on unsteady hydromagnetic free convection near a moving infinite flat plate in a rotating medium. The temperatures involved are assumed to be very high so tha...In this paper, a numerical simulation has been carried out on unsteady hydromagnetic free convection near a moving infinite flat plate in a rotating medium. The temperatures involved are assumed to be very high so that the radiative heat transfer is significant, which renders the problem highly non-linear even with the assumption of a differential approximation for the radiative heat flux. A numerical method based on the Nakamura scheme has been employed to obtain the temperature and velocity distributions which are depicted graphically. The effects of the different parameters entering into the problem have been discussed extensively.展开更多
The article is dedicated to the issues of heat transfer, radiant heat transfer in particular, between fluidized bed of coke and water-cooled panels arranged inside it in a staggered order. The model by A.F. Chudnovsky...The article is dedicated to the issues of heat transfer, radiant heat transfer in particular, between fluidized bed of coke and water-cooled panels arranged inside it in a staggered order. The model by A.F. Chudnovsky describing radiant heat transfer in a porous body (disperse medium) as applied to coke bed has been updated.展开更多
In this paper, large eddy simulation coupled with a dynamic subgrid scale (SGS) model is used to study turbulent channel flows with heat transfer. Some fundamental flow behaviors are discussed. Based on our calculate...In this paper, large eddy simulation coupled with a dynamic subgrid scale (SGS) model is used to study turbulent channel flows with heat transfer. Some fundamental flow behaviors are discussed. Based on our calculated results, the dynamic SGS model can reasonably predict some main characteristics of stratified turbulent channel flows. Our results are also in good agreement with theoretical analyses and previous calculated results.展开更多
In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a h...In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.展开更多
In this work, the effect of baffles in a pipe on heat transfer enhancement was studied using computa- tional fluid dynamics (CFD) in the presence of Al2O3 nanoparticles which are dispersed into water. Fluid flow thr...In this work, the effect of baffles in a pipe on heat transfer enhancement was studied using computa- tional fluid dynamics (CFD) in the presence of Al2O3 nanoparticles which are dispersed into water. Fluid flow through the horizontal tube with uniform heat flux was simulated numerically and three dimensional governing partial differential equations were solved. To find an accurate model for CFD simulations, the results obtained by the single phase were compared with those obtained by three different multiphase models including Eulerian, mixture and volume of fluid (VOF) at Reynolds numbers in range of 600 to 3000, and two different nanoparticle concentrations (1% and 1.6%). It was found that multi- phase models could better predict the heat transfer in nanofluids. The effect of baffles on heat transfer of nanofluid flow was also investigated through a baffled geometry. The numerical results show that at Reynolds numbers in the range of 600 to 2100, the heat transfer of nanofluid flowing in the geometry without baffle is greater than that of water flowing through a tube with baffle, whereas the difference between these effects (nanofluid and baffle) decreases with increasing the Reynolds number. At higher Reynolds numbers (2100-3000) the baffle has a greater effect on heat transfer enhancement than the nanofluid.展开更多
Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; theref...Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process.展开更多
A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics so...A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics software. Numerical simulation results show the following facts: Concentration of oxygen is relatively high along the boundary of the slope, and low in the center part where leaching rate is slow. Temper- ature is relatively low along the slope and reaches the highest along the bottom region near the slope, with difference being more than 6℃. Concentration of target mental ions is the highest in the bottom region near the slope. Oxidation leaching rate is relatively large in the bottom and slope part with a fast reaction rate, and small in the other part with low oxygen concentration.展开更多
The heat transfer of supercritical fluids is a vastly growing field, specifically to find suitable <span style="font-family:Verdana;">alternative to replace conventional R134a, which can be beneficial ...The heat transfer of supercritical fluids is a vastly growing field, specifically to find suitable <span style="font-family:Verdana;">alternative to replace conventional R134a, which can be beneficial for climate change. A </span><span style="font-family:Verdana;">considerable suggestion is R515A which possesses considerably lower global warming potential. The present simulations are designed to study supercritical fluid R515A under cooling conditions in horizontal position. The effect of pressure, mass flux, heat flux and tube diameter were considered for horizontal tube in the vicinity of pseudo critical temperature. Numeri</span><span style="font-family:Verdana;">cal investigations on heat transfer characteristics of supercritical fluid R515A were per</span><span style="font-family:Verdana;">formed using widely used shear-stress transport (SST) model. Moreover, heat transfer correlations </span><span style="font-family:Verdana;">were developed and suggested to accurately predict Nusselt number within 10% accuracy. </span><span style="font-family:Verdana;">The simulation results showed about 3.98% average absolute deviation.</span>展开更多
A mathematical model was developed for simulating heat transfer through the sidewall, bottom and top of a pilot scale TSL (Top-Submerged-Lance) Sirosmelt furnace. With a feed rate of about 50 kg/h, the furnace has b...A mathematical model was developed for simulating heat transfer through the sidewall, bottom and top of a pilot scale TSL (Top-Submerged-Lance) Sirosmelt furnace. With a feed rate of about 50 kg/h, the furnace has been used for investigating the technical feasibility of a variety of pyrometallurgical processes for smelting nonferrous and ferrous metals and for high temperature processing of solid wastes including electronic scraps, etc. The model was based on numerical solution of energy transport equations governing heat conduction in multi-layered linings in the sidewall, bottom and top lid of the furnace as well as convection and radiation of heat from the furnace outer surfaces to the ambient. Imperfect contacts between two neighboring solid lining layers due to air gap formation were considered. Temperature profiles were determined across the furnace bottom, top lid and three sections of the furnace sidewall, from which the heat loss rates through the corresponding parts of the furnace were calculated. The modelling results indicate that approximately 88% of heat is lost from the furnace sidewall, 7-8% from the bottom and 4-5% from the top lid. With increasing melt bath temperature, the proportion of total heat loss from the bottom decreases whereas that from the top lid increases and that from the sidewall is little changed. For a bath temperature of 1,300℃, total absolute heat loss rate from the furnace was found to be close to 12 kW.展开更多
Large Eddy Simulation (LES) of fully developed turbulent channel flow with heat transfer was performed to investigate the effects of the Reynolds number on the turbulence behavior. In the present study, the bottom wal...Large Eddy Simulation (LES) of fully developed turbulent channel flow with heat transfer was performed to investigate the effects of the Reynolds number on the turbulence behavior. In the present study, the bottom wall of the channel was cooled and the top wall was heated. The Reynolds numbers, based on the central mean-velocity and the half-width of the channel, were chosen as 4000, 6000, 10 4 and 2×10 4, and the Prandtl number as 1.0. To validate our calculations, the present results were compared with available data obtained by Direct Numerical Simulation (DNS), which proves to be in good agreement with each other. To reveal the effects of the Reynolds number, some typical quantities, including the velocity fluctuations, temperature fluctuation, heat fluxes and turbulent Prandtl number, were studied.展开更多
In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with...In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with the surrounding fluid has been investigated numerically. Computational fluid dynamics using the finite volume method has been used for modeling the conjugate heat transfer through the chip and the circuit board. Conjugate heat transfer has broad applications in engineering and industrial applications in design of cooling off electronic components. Effects of various inlet velocities have been studied on the heat transfer variation and temperature of the circuit board. Numerical results show that the temperature of the chip reduces as the velocity of the inlet fluid flow increases.展开更多
An approach to design multi-channel cylinder dryer was proposed. The heat transfer performance and flow characteristic under various structural parameters were analyzed. First, an experiment was designed and set up to...An approach to design multi-channel cylinder dryer was proposed. The heat transfer performance and flow characteristic under various structural parameters were analyzed. First, an experiment was designed and set up to measure the condensing heat transfer coefficient and the pressure drop in order to ,~erify the applicability of the Cavallini's correlation. Then, the relationship among the count of channels, aspect ratio, spacing ratio, width, height and hydraulic diameter of a channel was given. Finally, the correlation of condensing heat transfer and the homogeneous model was introduced in order to observe the heat transfer performance and flow characteristic of the multi-channel cylinder dryer affected by different structures. The study reveals that the structural parameters including count of channels, aspect ratio, spacing ratio of a channel dramatically influence the condensation heat transfer coefficient and frictional resistance of the steam. Based on the selected paper machine, it is suggested that the overall performance of the multi-channel cylinder dryer is best if the count of channels is 150-200, the aspect ratio is 1 : 3 and the spacing ratio is 1 : 1-1 : 3.展开更多
To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structur...To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structure of modified robust optimal adaptive control is presented.The mathematic modeling of FESS is given and the influence of heat transfer is analyzed through energy view. To consider the influence of heat transfer in controller design, we introduce a matched uncertainty that represents heat transfer influence in the linearized system of FESS. Based on this linear system, we deduce the design of modified robust optimal adaptive control law in a general way. Meanwhile, the robust stability of the modified robust optimal adaptive control law is proved through using Lyapunov stability theory. Then, a typical aero-engine test condition with Mach Dash and Zoom-Climb is used to verify the effectiveness of the devised adaptive controller. The simulation results show that the designed controller has servo tracking and disturbance rejection performance under heat transfer uncertainty and disturbance;the relative steady-state and dynamic errors of pressure and temperature are both smaller than 1% and 0.2% respectively. Furthermore,the influence of the modification parameter c is analyzed through simulation. Finally, comparing with the standard ideal model reference adaptive controller, the modified robust optimal adaptive controller obviously provides better control performance than the ideal model reference adaptive controller does.展开更多
The Large Eddy Simulation (LES) was used to study the free-surface turbulent channel flow with passive heat transfer. The three-dimensional filtered incompressible Navier-Stokes equations and energy equation were nume...The Large Eddy Simulation (LES) was used to study the free-surface turbulent channel flow with passive heat transfer. The three-dimensional filtered incompressible Navier-Stokes equations and energy equation were numerically solved with dynamic Subgrid Scale (SGS) models for modeling turbulent stresses and heat flux. To compare the turbulent behavior of the free-surface and two-walled channel flows, the LES of two-walled turbulent channel flow was performed. The statistical quantities and flow structures of the free-surface turbulence with heat transfer in the vicinity of the free-surface were investigated. The results are also in good agreement with theoretical analysis and available results by Direct Numerical Simulation (DNS).展开更多
Due to the complexity of metal AM (additive manufacturing), it can require many trial runs to obtain processing parameters which produce a quality build. Because of this trial and error process, the drive for simula...Due to the complexity of metal AM (additive manufacturing), it can require many trial runs to obtain processing parameters which produce a quality build. Because of this trial and error process, the drive for simulations of AM has grown significantly. A simulation only becomes useful to researchers if it can be shown that it is a true representation of the physical process being simulated. Each process being simulated has a different method of validation to show it is an accurate representation of the process. This paper explores the various methodologies for validation of laser-based metal AM simulations, focusing mainly on the modeling of the thermal processes and other characteristics derived from the thermal history. It will identify and explain the various validation techniques used, specifically looking at the frequency of reported use of each technique.展开更多
文摘This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.
基金The Key Project of Science and Technology of Ministryof Education (No.105085)the Specialized Research Fund of Science andTechnology Production Translation of Jiangsu Province (No.BA2006068).
文摘In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.
基金supported by the National Natural Science Foundation of China(Grant No.51276046)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112302110020)+1 种基金the China Postdoctoral Science Foundation(Grant No.2014M561037)the President Fund of University of Chinese Academy of Sciences,China(Grant No.Y3510213N00)
文摘Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation(DNS) is performed in this study to explore the mechanisms of heat transfer enhancement(HTE) and flow drag reduction(DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton–Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows.
基金Project supported by the National Natural Science Foundation ofChina (No. 40171047) and the Doctoral Foundation of NationalEducation Ministry China
文摘Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, KS, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution.
基金financially supported by the Program for New Century Excellent Talents in University(No.NCET-13-0229,NCET-09-0396)the National Science & Technology Key Projects of Numerical Control(No.2012ZX04010-031,2012ZX0412-011)the National High Technology Research and Development Program("863"Program)of China(No.2013031003)
文摘For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.
文摘In this paper, a numerical simulation has been carried out on unsteady hydromagnetic free convection near a moving infinite flat plate in a rotating medium. The temperatures involved are assumed to be very high so that the radiative heat transfer is significant, which renders the problem highly non-linear even with the assumption of a differential approximation for the radiative heat flux. A numerical method based on the Nakamura scheme has been employed to obtain the temperature and velocity distributions which are depicted graphically. The effects of the different parameters entering into the problem have been discussed extensively.
文摘The article is dedicated to the issues of heat transfer, radiant heat transfer in particular, between fluidized bed of coke and water-cooled panels arranged inside it in a staggered order. The model by A.F. Chudnovsky describing radiant heat transfer in a porous body (disperse medium) as applied to coke bed has been updated.
文摘In this paper, large eddy simulation coupled with a dynamic subgrid scale (SGS) model is used to study turbulent channel flows with heat transfer. Some fundamental flow behaviors are discussed. Based on our calculated results, the dynamic SGS model can reasonably predict some main characteristics of stratified turbulent channel flows. Our results are also in good agreement with theoretical analyses and previous calculated results.
基金supported by the Project of the National Key R&D Program(Grant No.2021YFA1000202)National Natural Science Foundation of China(Grant Nos.12120101001,12001326 and 12171283)+2 种基金Natural Science Foundation of Shandong Province(Grant Nos.ZR2021ZD03,ZR2020QA032 and ZR2019ZD42)China Postdoctoral Science Foundation(Grant Nos.BX20190191 and 2020M672038)the Startup Fund from Shandong University(Grant No.11140082063130)。
文摘In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.
文摘In this work, the effect of baffles in a pipe on heat transfer enhancement was studied using computa- tional fluid dynamics (CFD) in the presence of Al2O3 nanoparticles which are dispersed into water. Fluid flow through the horizontal tube with uniform heat flux was simulated numerically and three dimensional governing partial differential equations were solved. To find an accurate model for CFD simulations, the results obtained by the single phase were compared with those obtained by three different multiphase models including Eulerian, mixture and volume of fluid (VOF) at Reynolds numbers in range of 600 to 3000, and two different nanoparticle concentrations (1% and 1.6%). It was found that multi- phase models could better predict the heat transfer in nanofluids. The effect of baffles on heat transfer of nanofluid flow was also investigated through a baffled geometry. The numerical results show that at Reynolds numbers in the range of 600 to 2100, the heat transfer of nanofluid flowing in the geometry without baffle is greater than that of water flowing through a tube with baffle, whereas the difference between these effects (nanofluid and baffle) decreases with increasing the Reynolds number. At higher Reynolds numbers (2100-3000) the baffle has a greater effect on heat transfer enhancement than the nanofluid.
基金National Natural Science Foundation of China(Grant No.U1510131)Key Research and Development Projects of Shanxi Province of China(Grant Nos.201603D121010,201603D111004)+3 种基金Science and Technology Project of Jin Cheng City of China(Grant No.20155010)Youth Program of National Natural Science Fund of China(Grant No.51604181)Project of Young Scholar of Shanxi ProvinceLeading Talent Project of Innovative Entrepreneurial Team of Jiangsu Province(Grant No.51501122)
文摘Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process.
基金Project supported by the National Natural Science Foundation of China (Nos. 50934002 and 50774011)the Postdoctoral Science Foundation of China (No. 20090450014)the DoctoralNatural Science Foundation of China (No. 20070008038)
文摘A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics software. Numerical simulation results show the following facts: Concentration of oxygen is relatively high along the boundary of the slope, and low in the center part where leaching rate is slow. Temper- ature is relatively low along the slope and reaches the highest along the bottom region near the slope, with difference being more than 6℃. Concentration of target mental ions is the highest in the bottom region near the slope. Oxidation leaching rate is relatively large in the bottom and slope part with a fast reaction rate, and small in the other part with low oxygen concentration.
文摘The heat transfer of supercritical fluids is a vastly growing field, specifically to find suitable <span style="font-family:Verdana;">alternative to replace conventional R134a, which can be beneficial for climate change. A </span><span style="font-family:Verdana;">considerable suggestion is R515A which possesses considerably lower global warming potential. The present simulations are designed to study supercritical fluid R515A under cooling conditions in horizontal position. The effect of pressure, mass flux, heat flux and tube diameter were considered for horizontal tube in the vicinity of pseudo critical temperature. Numeri</span><span style="font-family:Verdana;">cal investigations on heat transfer characteristics of supercritical fluid R515A were per</span><span style="font-family:Verdana;">formed using widely used shear-stress transport (SST) model. Moreover, heat transfer correlations </span><span style="font-family:Verdana;">were developed and suggested to accurately predict Nusselt number within 10% accuracy. </span><span style="font-family:Verdana;">The simulation results showed about 3.98% average absolute deviation.</span>
文摘A mathematical model was developed for simulating heat transfer through the sidewall, bottom and top of a pilot scale TSL (Top-Submerged-Lance) Sirosmelt furnace. With a feed rate of about 50 kg/h, the furnace has been used for investigating the technical feasibility of a variety of pyrometallurgical processes for smelting nonferrous and ferrous metals and for high temperature processing of solid wastes including electronic scraps, etc. The model was based on numerical solution of energy transport equations governing heat conduction in multi-layered linings in the sidewall, bottom and top lid of the furnace as well as convection and radiation of heat from the furnace outer surfaces to the ambient. Imperfect contacts between two neighboring solid lining layers due to air gap formation were considered. Temperature profiles were determined across the furnace bottom, top lid and three sections of the furnace sidewall, from which the heat loss rates through the corresponding parts of the furnace were calculated. The modelling results indicate that approximately 88% of heat is lost from the furnace sidewall, 7-8% from the bottom and 4-5% from the top lid. With increasing melt bath temperature, the proportion of total heat loss from the bottom decreases whereas that from the top lid increases and that from the sidewall is little changed. For a bath temperature of 1,300℃, total absolute heat loss rate from the furnace was found to be close to 12 kW.
基金ThisstudywassupportedbytheNationalScienceFundforDistinguishedScholars (No :10 12 5 2 10 ),theChinaNKBRSFProject (No :2 0 0 1CB40 96 0 0 ),theProgramofHundredTalentsof (CAS) ,andtheProgramoftheTrans CenturyOutstandingYoungTrainingof(MOE)
文摘Large Eddy Simulation (LES) of fully developed turbulent channel flow with heat transfer was performed to investigate the effects of the Reynolds number on the turbulence behavior. In the present study, the bottom wall of the channel was cooled and the top wall was heated. The Reynolds numbers, based on the central mean-velocity and the half-width of the channel, were chosen as 4000, 6000, 10 4 and 2×10 4, and the Prandtl number as 1.0. To validate our calculations, the present results were compared with available data obtained by Direct Numerical Simulation (DNS), which proves to be in good agreement with each other. To reveal the effects of the Reynolds number, some typical quantities, including the velocity fluctuations, temperature fluctuation, heat fluxes and turbulent Prandtl number, were studied.
文摘In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with the surrounding fluid has been investigated numerically. Computational fluid dynamics using the finite volume method has been used for modeling the conjugate heat transfer through the chip and the circuit board. Conjugate heat transfer has broad applications in engineering and industrial applications in design of cooling off electronic components. Effects of various inlet velocities have been studied on the heat transfer variation and temperature of the circuit board. Numerical results show that the temperature of the chip reduces as the velocity of the inlet fluid flow increases.
基金Acknowledgements This project is supported by the National Natural Science Foundation of China (Grant No. 51375286), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2012JZ7002) and the key scientific and technological innovation team fund of Shaanxi Province of China (Program No. 2014KCT- 15).
文摘An approach to design multi-channel cylinder dryer was proposed. The heat transfer performance and flow characteristic under various structural parameters were analyzed. First, an experiment was designed and set up to measure the condensing heat transfer coefficient and the pressure drop in order to ,~erify the applicability of the Cavallini's correlation. Then, the relationship among the count of channels, aspect ratio, spacing ratio, width, height and hydraulic diameter of a channel was given. Finally, the correlation of condensing heat transfer and the homogeneous model was introduced in order to observe the heat transfer performance and flow characteristic of the multi-channel cylinder dryer affected by different structures. The study reveals that the structural parameters including count of channels, aspect ratio, spacing ratio of a channel dramatically influence the condensation heat transfer coefficient and frictional resistance of the steam. Based on the selected paper machine, it is suggested that the overall performance of the multi-channel cylinder dryer is best if the count of channels is 150-200, the aspect ratio is 1 : 3 and the spacing ratio is 1 : 1-1 : 3.
基金funded by China Scholarship Council (CSC)and National Science and Technology Major Project,China(No. 2017-V-0015-0067)。
文摘To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structure of modified robust optimal adaptive control is presented.The mathematic modeling of FESS is given and the influence of heat transfer is analyzed through energy view. To consider the influence of heat transfer in controller design, we introduce a matched uncertainty that represents heat transfer influence in the linearized system of FESS. Based on this linear system, we deduce the design of modified robust optimal adaptive control law in a general way. Meanwhile, the robust stability of the modified robust optimal adaptive control law is proved through using Lyapunov stability theory. Then, a typical aero-engine test condition with Mach Dash and Zoom-Climb is used to verify the effectiveness of the devised adaptive controller. The simulation results show that the designed controller has servo tracking and disturbance rejection performance under heat transfer uncertainty and disturbance;the relative steady-state and dynamic errors of pressure and temperature are both smaller than 1% and 0.2% respectively. Furthermore,the influence of the modification parameter c is analyzed through simulation. Finally, comparing with the standard ideal model reference adaptive controller, the modified robust optimal adaptive controller obviously provides better control performance than the ideal model reference adaptive controller does.
基金This work was supported by the National Science Fund for Distinguished Scholars (No:10125210)the Program of Hundred Talents
文摘The Large Eddy Simulation (LES) was used to study the free-surface turbulent channel flow with passive heat transfer. The three-dimensional filtered incompressible Navier-Stokes equations and energy equation were numerically solved with dynamic Subgrid Scale (SGS) models for modeling turbulent stresses and heat flux. To compare the turbulent behavior of the free-surface and two-walled channel flows, the LES of two-walled turbulent channel flow was performed. The statistical quantities and flow structures of the free-surface turbulence with heat transfer in the vicinity of the free-surface were investigated. The results are also in good agreement with theoretical analysis and available results by Direct Numerical Simulation (DNS).
文摘Due to the complexity of metal AM (additive manufacturing), it can require many trial runs to obtain processing parameters which produce a quality build. Because of this trial and error process, the drive for simulations of AM has grown significantly. A simulation only becomes useful to researchers if it can be shown that it is a true representation of the physical process being simulated. Each process being simulated has a different method of validation to show it is an accurate representation of the process. This paper explores the various methodologies for validation of laser-based metal AM simulations, focusing mainly on the modeling of the thermal processes and other characteristics derived from the thermal history. It will identify and explain the various validation techniques used, specifically looking at the frequency of reported use of each technique.