期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Catalytic Cracking and PSO-RBF Neural Network Model of FCC Cycle Oil 被引量:3
1
作者 Liu Yibin Tu Yongshan +1 位作者 Li Chunyi Yang Chaohe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第4期63-69,共7页
Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were in... Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were investigated. Hydrocarbon composition of gasoline was analyzed by gas chromatograph. Experimental results showed that conversion of cycle oil was low on account of its poor crackability performance, and the effect of reaction conditions on gasoline yield was obvi- ous. The paraffin content was very high in gasoline. Based on the experimental yields under different reaction conditions, a model for prediction of gasoline and diesel yields was established by radial basis function neural network (RBFNN). In the model, the product yield was viewed as function of reaction conditions. Particle swarm optimization (PSO) algorithm with global search capability was used to obtain optimal conditions for a highest yield of light oil. The results showed that the yield of gasoline and diesel predicted by RBF neural network agreed well with the experimental values. The optimized reac- tion conditions were obtained at a reaction temperature of around 520 ~C, a catalyst to oil ratio of 7.4 and a space velocity of 8 h~. The predicted total yield of gasoline and diesel reached 42.2% under optimized conditions. 展开更多
关键词 catalytic cracking cycle oil radical basis function neural network particle swarm optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部