The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band an...The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band and the channel bandwidth is up to 100 MHz. It operates in the time division duplex (TDD) mode and supports the multiple-input multipleoutput (MIMO) technique for the international mobile telecommunications (IMT)-advanced systems. The classical superheterodyne scheme is employed to achieve optimal performance. Design issues of the essential components such as low noise amplifier, power amplifier and local oscillators are described in detail. Measurement results show that the maximum linear output power of the RF transceiver is above 23 dBm, and the gain and noise figure of the low noise amplifier is around 24 dB and below 1 dB, respectively. Furthermore, the error vector magnitude (EVM) measurement shows that the performance of the developed RF transceiver is well beyond the requirements of the long term evolution (LTE)-advanced system. With up to 8 x 8 MIMO configuration, the RF transceiver supports more than a 1 Gbit/s data rate in field tests.展开更多
基金The National Natural Science Foundation of China (No.60702027,60921063)the National Basic Research Program of China(973 Program)(No.2010CB327400)the National Science and Technology Major Project of Ministry of Science and Technology of China(No.2010ZX03007-001-01,2011ZX03004-001)
文摘The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band and the channel bandwidth is up to 100 MHz. It operates in the time division duplex (TDD) mode and supports the multiple-input multipleoutput (MIMO) technique for the international mobile telecommunications (IMT)-advanced systems. The classical superheterodyne scheme is employed to achieve optimal performance. Design issues of the essential components such as low noise amplifier, power amplifier and local oscillators are described in detail. Measurement results show that the maximum linear output power of the RF transceiver is above 23 dBm, and the gain and noise figure of the low noise amplifier is around 24 dB and below 1 dB, respectively. Furthermore, the error vector magnitude (EVM) measurement shows that the performance of the developed RF transceiver is well beyond the requirements of the long term evolution (LTE)-advanced system. With up to 8 x 8 MIMO configuration, the RF transceiver supports more than a 1 Gbit/s data rate in field tests.