An inductively coupled radio frequency ion source has been developed and its extraction characteristics measured. Beam current density up to 0.11 mA/ cm2 was obtained with argon at a rf discharge power of about 140 W....An inductively coupled radio frequency ion source has been developed and its extraction characteristics measured. Beam current density up to 0.11 mA/ cm2 was obtained with argon at a rf discharge power of about 140 W. The dependences of ion beam on the discharge parameters such as rf source power, gas pressure and gas flow rate was studied.展开更多
Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit mission...Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.展开更多
A high-density RF ion source is an essential part of a neutral beam injector. In this study, the authors attempt to retrofit an original regular RF ion source reactor by inserting a thin dielectric tube through the sy...A high-density RF ion source is an essential part of a neutral beam injector. In this study, the authors attempt to retrofit an original regular RF ion source reactor by inserting a thin dielectric tube through the symmetric axis of the discharge chamber. With the aid of this inner tube, the reactor is capable of generating a radial magnetic field instead of the original transverse magnetic field, which solves the E × B drift problem in the current RF ion source structure. To study the disturbance of the dielectric tube, a fluid model is introduced to study the plasma parameters with or without the internal dielectric tube, based on the inductively coupled plasma(ICP) reactor. The simulation results show that while introducing the internal dielectric tube into the ICP reactor, both the plasma density and plasma potential have minor influence during the discharge process, and there is good uniformity at the extraction region. The influence of the control parameters reveals that the plasma densities at the extraction region decrease first and subsequently slow down while enhancing the diffusion region.展开更多
Ion beam technology is used widely in many fields such as electric, material, optics, medicine, biology and so on. At the same time, it brings some huge technological effects and economical benefits, especially for th...Ion beam technology is used widely in many fields such as electric, material, optics, medicine, biology and so on. At the same time, it brings some huge technological effects and economical benefits, especially for the optical applocations. According for the technology, the properties of high accuarate spectral analyzer also can be improved by manufacturing the lage-area holographic ion beam eathing(HIBE) grating. Simultaneously, as one of the parts of ion beam technology, the developments of ion beam sources have some important effects to content the demands of ion beam technology such as large ion beam flux, excellent optical qualities. In this paper, an ion beam source called inductively coupled plasma(ICP) ion beam source was introduced, and the extractor system, the application prospect were also discussed.展开更多
Hα(Balmer-alpha), Hβ (Balmer-beta) and Hγ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the Hα, Hβ and Hγ spectra...Hα(Balmer-alpha), Hβ (Balmer-beta) and Hγ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the Hα, Hβ and Hγ spectral lines are detected by increasing the input power (0-6 kW) of ICPs (inductively coupled plasmas). With the increase of net input power, the intensity of Hα im- proves rapidly (0-2 kW), and then reaches its dynamic equilibrium; the intensities of Hβ can be divided into three processes: obvious increase (0-2 kW), rapid increase (2-4 kW), almost constant (4-6 kW); while the intensities of Hγ increase very slowly. The energy levels of the excited hydro- gen atoms and the splitting energy levels produced by an obvious Stark effect play an important role in the results.展开更多
基金This work was supported by National Natural Foundation of China No.19835030.
文摘An inductively coupled radio frequency ion source has been developed and its extraction characteristics measured. Beam current density up to 0.11 mA/ cm2 was obtained with argon at a rf discharge power of about 140 W. The dependences of ion beam on the discharge parameters such as rf source power, gas pressure and gas flow rate was studied.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12005031 and 12275041)the Natural Science Fund from the Interdisciplinary Project of Dalian University(Grant No.DLUXK-2023-QN-001)。
文摘Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11305028,11305032,and 11320101005)
文摘A high-density RF ion source is an essential part of a neutral beam injector. In this study, the authors attempt to retrofit an original regular RF ion source reactor by inserting a thin dielectric tube through the symmetric axis of the discharge chamber. With the aid of this inner tube, the reactor is capable of generating a radial magnetic field instead of the original transverse magnetic field, which solves the E × B drift problem in the current RF ion source structure. To study the disturbance of the dielectric tube, a fluid model is introduced to study the plasma parameters with or without the internal dielectric tube, based on the inductively coupled plasma(ICP) reactor. The simulation results show that while introducing the internal dielectric tube into the ICP reactor, both the plasma density and plasma potential have minor influence during the discharge process, and there is good uniformity at the extraction region. The influence of the control parameters reveals that the plasma densities at the extraction region decrease first and subsequently slow down while enhancing the diffusion region.
文摘Ion beam technology is used widely in many fields such as electric, material, optics, medicine, biology and so on. At the same time, it brings some huge technological effects and economical benefits, especially for the optical applocations. According for the technology, the properties of high accuarate spectral analyzer also can be improved by manufacturing the lage-area holographic ion beam eathing(HIBE) grating. Simultaneously, as one of the parts of ion beam technology, the developments of ion beam sources have some important effects to content the demands of ion beam technology such as large ion beam flux, excellent optical qualities. In this paper, an ion beam source called inductively coupled plasma(ICP) ion beam source was introduced, and the extractor system, the application prospect were also discussed.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2011GB108011 and 2010GB103001)the Major International(Regional) Project Cooperation and Exchanges(No.11320101005)
文摘Hα(Balmer-alpha), Hβ (Balmer-beta) and Hγ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the Hα, Hβ and Hγ spectral lines are detected by increasing the input power (0-6 kW) of ICPs (inductively coupled plasmas). With the increase of net input power, the intensity of Hα im- proves rapidly (0-2 kW), and then reaches its dynamic equilibrium; the intensities of Hβ can be divided into three processes: obvious increase (0-2 kW), rapid increase (2-4 kW), almost constant (4-6 kW); while the intensities of Hγ increase very slowly. The energy levels of the excited hydro- gen atoms and the splitting energy levels produced by an obvious Stark effect play an important role in the results.