Several countries reprocess their nuclear spent fuel using the Purex process to recover U and Pu as MOX fuel.The high level radioactive waste(HLW)produced during this reprocessing is a complex mixture containing both ...Several countries reprocess their nuclear spent fuel using the Purex process to recover U and Pu as MOX fuel.The high level radioactive waste(HLW)produced during this reprocessing is a complex mixture containing both radioactive(fission products,minor actinides)and non-radioactive elements.Since HLW shows high rate heat release and contains some long half-life and biologically toxic radionuclide,its treatment and disposal technology is complex,difficult and high cost.HLW treatment and disposal become a worldwide challenge and research focus.In order to minimize the potential long-term impact of HLW,studies on enhanced chemical separation processes of long-lived radionuclides are in progress.Two options are then envisaged for these separated radionuclides:(a)transmutation into short-lived or non-radioactive elements,(b)immobilization in highly durable ceramic matrix instead of borosilicate glass.In this paper,we briefly review the composition,structure,processing and product properties of some ceramic candidates for inert matrix fuels(IMF)and the immobilization of high level radioactive waste.展开更多
Bayer red mud(BRM)is a kind of industrial solid waste characterized by huge volume and high alkalinity.Its disposal generates serious environmental pollution and occupies a large number of farmland.The utilization and...Bayer red mud(BRM)is a kind of industrial solid waste characterized by huge volume and high alkalinity.Its disposal generates serious environmental pollution and occupies a large number of farmland.The utilization and recycling of BRM is currently a crucial issue and needs to be addressed as soon as possible.The chemical composition of BRM is similar to cement clinker.In this study,the feasibility of preparing Belite-ferroaluminate clinker(BFAC)with different BRM was explored.The physical properties,mechanics performance,radioactivity levels and trace harmful metals leaching were measured.XRD,BEI and EDS were used to characterize the mineral formation,and SEM is used to reveal the solidified mechanism of trace harmful metal.The results show that the preparation of BFAC using a certain amount of BRM was feasible.The formed phases in clinkers mainly included C_(4)A_(3)Š,C_(2)S and C_(4)AF.The flexural strength and compressive strength of BFAC at 3 days increased whereas 28 and 90 days decreased with the increase of BRM due to the formation of higher C_(4)AF and lower C_(2)S.The formation of large amounts of Al_(2)O_(3)·3H_(2)O gel and Fe_(2)O_(3)·3H_(2)O gel in hydration products enhanced the adsorption capability to heavy metals and other ions.The trace harmful metal concentration in the leaching solution was much less than the upper limits.The radioactivity level of leaching solution was close to natural radioactive background.BRM is safe as raw material of BFAC.展开更多
This paper describes a low-cost and fast method to evaluate gross α and β^(-) radioactivities in natural water based on an online high-purity germanium detector gamma measurement system.The major gamma activities in...This paper describes a low-cost and fast method to evaluate gross α and β^(-) radioactivities in natural water based on an online high-purity germanium detector gamma measurement system.The major gamma activities in natural water are provided by natural and artificial radionuclides such as ^(40) K,^(137)Cs,and radionuclides belonging to ^(238)U and ^(232)Th series.The main a emitters related to gamma emissions in natural water are ^(224)Ra(240.98 keV)and ^(226)Ra(186.21 keV),and the β^(-) emitters are ^(40) K(1460.85 keV),^(214)Bi(609.31 keV),^(208)Tl(583.19 keV),and ^(214)Pb(351.93 keV).The formula for gross α and β^(-) activity concentration is based on these radionuclides,and the short half-life decay products are considered in the calculation.The detection efficiency of the device across energy region(0–3 MeV)is obtained through Monte Carlo simulation,and a calibration experiment is conducted to verify the simulation results.Gamma radioactivity is measured continuously for 114 d in Pixian County and Dongfeng Canal located in the Zouma River,Chengdu,Sichuan Province,China.A comparison of the calculation results and monitoring data from the Sichuan Management and Monitoring Center Station of Radioactive Environment indicates that the percentage and absolute error of a activity concentration is lower than 53%and 0.02 Bq/L,respectively,and that of β-activity concentration is lower than 33.2%and 0.016 Bq/L,respectively.The method can rapidly determine gross α and β^(-) activity concentrations in natural water online.展开更多
文摘Several countries reprocess their nuclear spent fuel using the Purex process to recover U and Pu as MOX fuel.The high level radioactive waste(HLW)produced during this reprocessing is a complex mixture containing both radioactive(fission products,minor actinides)and non-radioactive elements.Since HLW shows high rate heat release and contains some long half-life and biologically toxic radionuclide,its treatment and disposal technology is complex,difficult and high cost.HLW treatment and disposal become a worldwide challenge and research focus.In order to minimize the potential long-term impact of HLW,studies on enhanced chemical separation processes of long-lived radionuclides are in progress.Two options are then envisaged for these separated radionuclides:(a)transmutation into short-lived or non-radioactive elements,(b)immobilization in highly durable ceramic matrix instead of borosilicate glass.In this paper,we briefly review the composition,structure,processing and product properties of some ceramic candidates for inert matrix fuels(IMF)and the immobilization of high level radioactive waste.
基金This study was financially supported by the Guangxi Science and Technology Plan project of China(Grant No.2018GXNSFBA138053,No.2018AA23004)Guangxi Young and Middleaged Teachers Basic Ability Promotion Project(Grant No.2017KY0250)+1 种基金Key Laboratory of New Processing Technology for Nonferrous Metal&Materials,Ministry of Education(Grant No.19AA-13)Guangxi Key Laboratory of New Energy and Building Energy Saving(Grant No.19-J-21-24).
文摘Bayer red mud(BRM)is a kind of industrial solid waste characterized by huge volume and high alkalinity.Its disposal generates serious environmental pollution and occupies a large number of farmland.The utilization and recycling of BRM is currently a crucial issue and needs to be addressed as soon as possible.The chemical composition of BRM is similar to cement clinker.In this study,the feasibility of preparing Belite-ferroaluminate clinker(BFAC)with different BRM was explored.The physical properties,mechanics performance,radioactivity levels and trace harmful metals leaching were measured.XRD,BEI and EDS were used to characterize the mineral formation,and SEM is used to reveal the solidified mechanism of trace harmful metal.The results show that the preparation of BFAC using a certain amount of BRM was feasible.The formed phases in clinkers mainly included C_(4)A_(3)Š,C_(2)S and C_(4)AF.The flexural strength and compressive strength of BFAC at 3 days increased whereas 28 and 90 days decreased with the increase of BRM due to the formation of higher C_(4)AF and lower C_(2)S.The formation of large amounts of Al_(2)O_(3)·3H_(2)O gel and Fe_(2)O_(3)·3H_(2)O gel in hydration products enhanced the adsorption capability to heavy metals and other ions.The trace harmful metal concentration in the leaching solution was much less than the upper limits.The radioactivity level of leaching solution was close to natural radioactive background.BRM is safe as raw material of BFAC.
基金the National Science Foundation of China(No.41774147)the National Key R&D Program of China(No.2017YFC0602105)+1 种基金the Science–Technology Support Plan Projects of Sichuan Province(No.2020YJ0334)the Sichuan Science and Technology Program(No.2020JDRC0108).
文摘This paper describes a low-cost and fast method to evaluate gross α and β^(-) radioactivities in natural water based on an online high-purity germanium detector gamma measurement system.The major gamma activities in natural water are provided by natural and artificial radionuclides such as ^(40) K,^(137)Cs,and radionuclides belonging to ^(238)U and ^(232)Th series.The main a emitters related to gamma emissions in natural water are ^(224)Ra(240.98 keV)and ^(226)Ra(186.21 keV),and the β^(-) emitters are ^(40) K(1460.85 keV),^(214)Bi(609.31 keV),^(208)Tl(583.19 keV),and ^(214)Pb(351.93 keV).The formula for gross α and β^(-) activity concentration is based on these radionuclides,and the short half-life decay products are considered in the calculation.The detection efficiency of the device across energy region(0–3 MeV)is obtained through Monte Carlo simulation,and a calibration experiment is conducted to verify the simulation results.Gamma radioactivity is measured continuously for 114 d in Pixian County and Dongfeng Canal located in the Zouma River,Chengdu,Sichuan Province,China.A comparison of the calculation results and monitoring data from the Sichuan Management and Monitoring Center Station of Radioactive Environment indicates that the percentage and absolute error of a activity concentration is lower than 53%and 0.02 Bq/L,respectively,and that of β-activity concentration is lower than 33.2%and 0.016 Bq/L,respectively.The method can rapidly determine gross α and β^(-) activity concentrations in natural water online.