Influence radius of a pumping well is a crucial parameter for hydrogeologists and engineers. Knowing the radius of influence for a designed drawdown enables one to calculate the pumping rate required to layout a proje...Influence radius of a pumping well is a crucial parameter for hydrogeologists and engineers. Knowing the radius of influence for a designed drawdown enables one to calculate the pumping rate required to layout a project foundation that may need lowering of groundwater level to a certain depth due to dewatering operation. In addition, this is important for hydrogeologists to determine ground water contamination flow paths and contributing recharge area for domestic water supply and aquifer management purposes. Empirical formulas that usually neglect vital parameters to determine the influence radius accurately have been traditionally utilized due to lack of adequate methods. In this study, a physically based method, which incorporates aquifer hydraulic gradient for determining the influence radius of a pumping well in steady-state flow condition, was developed. It utilizes Darcy and Dupuit laws to calculate the influence radius, where Darcy’s law and Dupuit equation, in steady-state condition, represent the inflow and the outflow of the pumping well, respectively. In an untraditional manner, this method can be also used to determine aquifer hydraulic conductivity as an alternative to other pumping test methods with high degree of accuracy. The developed method is easy to use;where a simple mathematical calculator may be used to calculate the influence radius and the pumping rate or hydraulic conductivity. By comparing the results from this method with the MODFLOW numerical model outputs with different simulated scenarios, it is realized that this method is much superior and more advantageous than other commonly used empirical methods.展开更多
Air sparging(AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characte...Air sparging(AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.展开更多
The present study has been undertaken to depict spatial distribution of different aquifer parameters in the eastern part of Kushtia district through a detailed hydrogeological survey. For this investigation, 119 litho...The present study has been undertaken to depict spatial distribution of different aquifer parameters in the eastern part of Kushtia district through a detailed hydrogeological survey. For this investigation, 119 lithologs and 92 pumping test data have been used. These data have been processed, analyzed, interpreted and krigged for the spatial assessment of the aquifer properties viz. transmissivity, hydraulic conductivity, hydraulic diffusivity, specific yield, radius of influence, and specific drawdown. It is seen from the investigation that the transmissivity and hydraulic conductivity values obtained from the pumping tests of the wells are varying from 1811 m<sup>2</sup>/day to 2568 m<sup>2</sup>/day and 32.5 m/day and 61.5 m/day respectively, the hydraulic diffusivity being ranging from 181,143 m<sup>2</sup>/day to 256,788 m<sup>2</sup>/day. The estimated specific yield of 17.97% - 23.46% supports that the area is dominated with coarse grained sands. This study reveals that the distribution of deep tube wells in the area are not within the radius of influence (638 - 760 m) each other, but few shallow and hand tube wells existed within the radius of influence. The estimated specific draw down is varying from 57 m/cumec to 126.1 m/cumec. From the overall analysis, it is found that the area is favorable for groundwater exploration.展开更多
In general, the content of this study is aimed at presenting a comparative analysis of the hydrogeological results of three underground sources. The points or sources of analysis are the Dolores 01, Dolores 02 and Mec...In general, the content of this study is aimed at presenting a comparative analysis of the hydrogeological results of three underground sources. The points or sources of analysis are the Dolores 01, Dolores 02 and Mecatepillo wells, which are registered at the following coordinates: East 610561, North 1292576, East 610234, North 1293090, East 611482, North 1293881, respectively, according to the UTM WGS system 84 Zone 16N, the analysis is done with a basin approach in the Nandaime-Rivas aquifer. According to the above, bibliographic resources have been consulted that help to further understand the comparative criteria such as transmissibility, storage coefficient, a radius of influence and thickness of the aquifer, providing complementary and additional information.展开更多
文摘Influence radius of a pumping well is a crucial parameter for hydrogeologists and engineers. Knowing the radius of influence for a designed drawdown enables one to calculate the pumping rate required to layout a project foundation that may need lowering of groundwater level to a certain depth due to dewatering operation. In addition, this is important for hydrogeologists to determine ground water contamination flow paths and contributing recharge area for domestic water supply and aquifer management purposes. Empirical formulas that usually neglect vital parameters to determine the influence radius accurately have been traditionally utilized due to lack of adequate methods. In this study, a physically based method, which incorporates aquifer hydraulic gradient for determining the influence radius of a pumping well in steady-state flow condition, was developed. It utilizes Darcy and Dupuit laws to calculate the influence radius, where Darcy’s law and Dupuit equation, in steady-state condition, represent the inflow and the outflow of the pumping well, respectively. In an untraditional manner, this method can be also used to determine aquifer hydraulic conductivity as an alternative to other pumping test methods with high degree of accuracy. The developed method is easy to use;where a simple mathematical calculator may be used to calculate the influence radius and the pumping rate or hydraulic conductivity. By comparing the results from this method with the MODFLOW numerical model outputs with different simulated scenarios, it is realized that this method is much superior and more advantageous than other commonly used empirical methods.
基金The National Natural Science Foundation of China(No. 20276048)
文摘Air sparging(AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.
文摘The present study has been undertaken to depict spatial distribution of different aquifer parameters in the eastern part of Kushtia district through a detailed hydrogeological survey. For this investigation, 119 lithologs and 92 pumping test data have been used. These data have been processed, analyzed, interpreted and krigged for the spatial assessment of the aquifer properties viz. transmissivity, hydraulic conductivity, hydraulic diffusivity, specific yield, radius of influence, and specific drawdown. It is seen from the investigation that the transmissivity and hydraulic conductivity values obtained from the pumping tests of the wells are varying from 1811 m<sup>2</sup>/day to 2568 m<sup>2</sup>/day and 32.5 m/day and 61.5 m/day respectively, the hydraulic diffusivity being ranging from 181,143 m<sup>2</sup>/day to 256,788 m<sup>2</sup>/day. The estimated specific yield of 17.97% - 23.46% supports that the area is dominated with coarse grained sands. This study reveals that the distribution of deep tube wells in the area are not within the radius of influence (638 - 760 m) each other, but few shallow and hand tube wells existed within the radius of influence. The estimated specific draw down is varying from 57 m/cumec to 126.1 m/cumec. From the overall analysis, it is found that the area is favorable for groundwater exploration.
文摘In general, the content of this study is aimed at presenting a comparative analysis of the hydrogeological results of three underground sources. The points or sources of analysis are the Dolores 01, Dolores 02 and Mecatepillo wells, which are registered at the following coordinates: East 610561, North 1292576, East 610234, North 1293090, East 611482, North 1293881, respectively, according to the UTM WGS system 84 Zone 16N, the analysis is done with a basin approach in the Nandaime-Rivas aquifer. According to the above, bibliographic resources have been consulted that help to further understand the comparative criteria such as transmissibility, storage coefficient, a radius of influence and thickness of the aquifer, providing complementary and additional information.