The current High-Speed Railway(HSR)communications increasingly fail to satisfy the massive access services of numerous user equipment brought by the increasing number of people traveling by HSRs.To this end,this paper...The current High-Speed Railway(HSR)communications increasingly fail to satisfy the massive access services of numerous user equipment brought by the increasing number of people traveling by HSRs.To this end,this paper investigates millimeter-Wave(mmWave)extra-large scale(XL)-MIMO-based massive Internet-of-Things(loT)access in near-field HSR communications,and proposes a block simultaneous orthogonal matching pursuit(B-SOMP)-based Active User Detection(AUD)and Channel Estimation(CE)scheme by exploiting the spatial block sparsity of the XLMIMO-based massive access channels.Specifically,we first model the uplink mmWave XL-MIMO channels,which exhibit the near-field propagation characteristics of electromagnetic signals and the spatial non-stationarity of mmWave XL-MIMO arrays.By exploiting the spatial block sparsity and common frequency-domain sparsity pattern of massive access channels,the joint AUD and CE problem can be then formulated as a Multiple Measurement Vectors Compressive Sensing(MIMV-CS)problem.Based on the designed sensing matrix,a B-SOMP algorithm is proposed to achieve joint AUD and CE.Finally,simulation results show that the proposed solution can obtain a better AUD and CE performance than the conventional CS-based scheme for massive IoT access in near-field HSR communications.展开更多
This paper investigates the cross-correlation characteristics of large-scale parameters(LSPs) and small-scale fading(SSF) for high-speed railway(HSR) multilink propagation scenarios, based on realistic measurements co...This paper investigates the cross-correlation characteristics of large-scale parameters(LSPs) and small-scale fading(SSF) for high-speed railway(HSR) multilink propagation scenarios, based on realistic measurements conducted on Beijing to Tianjin HSR line in China. A long-term evolution-based channel sounding system is utilized in the measurements to obtain the channel data. By applying a proposed time-delay based dynamic partition method, multi-link channel impulse responses are extracted from the raw channel data. Then, the statistical results of LSPs, including shadow fading, K-factor, and root-mean-square delay spread are derived and the cross-correlation coefficients of these LPSs are calculated. Moreover, the SSF spatial correlation and cross-correlation of SSF are analyzed. These results can be used to exploit multi-link channel model and to optimize the next-generation HSR communication system.展开更多
In the new era of railways, infrastructure, trains and travelers will be interconnected. In order to realize a seamless high-data rate wireless connectivity, up to dozens of GHz bandwidth is required. This motivates t...In the new era of railways, infrastructure, trains and travelers will be interconnected. In order to realize a seamless high-data rate wireless connectivity, up to dozens of GHz bandwidth is required. This motivates the exploration of the underutilized millimeter wave (mmWave) as well as the largely unexplored THz band. In this paper, we first identify relevant communication scenarios for railway applications. Then the specific challenges and estimates of the bandwidth requirements for high-data rate railway connec-tivity in these communication scenarios are described. Finally, we outline the major challenges on propagation channel modeling and provide a technical route for further studies.展开更多
Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing syst...Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing system performance.Ray tracing is an effective method to investigate propagation characteristics in a complex environment,and how to quickly and accurately obtain environmental information needs to be solved.This paper presents dynamic environment reconstruction and ray tracing simulation in railway tunnel environment based on Simultaneous Localization and Mapping(SLAM)algorithm and Poisson reconstruction algorithm.Accurate channel parameters are obtained and analyzed based on ray tracing simulation.Both straight and curved tunnels are considered and investigated,and the results show the channel characteristics in complex railway tunnel environments.展开更多
An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are com...An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are complex and diverse,so it is indispensable to test and verify the railway 5G before actual deployment.The design and creation of the railway 5G integrated innovation test platform provides engineering design,test and verification conditions for the networking,coverage and business development of 5G public networks and 5G-R in railway scenarios.This paper introduces the design of the overall architecture for the integrated railway 5G innovation test platform according to the railway network requirements,application scenarios and intelligent development trend;respectively elaborates on the design of the 5G-R core network,bearer network and wireless access along loop tracks,in combination with the characteristics of railway scenarios and the requirements of railway dispatching,operation and safety;raises further solutions on the network deployment and coverage schemes of 5G public networks so as to meet the application requirements of 5G public networks.The study results show that the integrated railway 5G innovation test platform scheme contains co-existence of 5G public and private networks,combines the indoor and outdoor scenarios,as well as takes into account of the dynamic and static tests so as to meet the environmental requirements for the integrated railway 5G test and application of all network functions,for which it can provide comprehensive technical support for railway 5G technology research and development,standard formulation,testing,etc.展开更多
The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technica...The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technical routes of railway next-generation mobile communication determined by China State Railway Group Co.,Ltd.From the aspects of work objectives,principles,technical routes and innovative working methods,the paper elaborates the ideas of railway 5G scientific and technological research,puts forward the contents and plans of scientific and technological research on railway 5G private network,systematically organizes the achievements in the scientific and technological research stage of railway 5G private network,and sets forth the key contents of next-step scientific and technological research.展开更多
In this paper,a beamforming scheme to improve the coverage in high-speed railway communication systems is investigated.A dedicated coverage model,where the coverage cell is an ellipse rather than the traditional circu...In this paper,a beamforming scheme to improve the coverage in high-speed railway communication systems is investigated.A dedicated coverage model,where the coverage cell is an ellipse rather than the traditional circular or linear,is considered.Based on the elliptical coverage cell,an optimization problem for the beamforming design is formulated to maximize the percentage of railway coverage,subject to the constraints on equal expected designed propagation gain(the gain obtained by a combination of designed beam and propagation channel)on the elliptical curve,i.e.,the expectation of designed propagation gain on the elliptical curve are all equal.Considering that the coverage can be improved by increasing the minimum designed propagation gain on the railway,the problem can be recast to maximizing the equal expected designed propagation gain on the elliptical curve.Subsequently,a beamforming design with an improved β-fairness power allocation,where the optimization problem is formulated to maximize the minimum expected received power over time with the constraints on elliptical cell based beamforming and mobile service amount,is proposed to further improve the coverage.An alternating iteration algorithm is developed to find the optimal beamforming vector and the instantaneous transmit power.Through numerical results,it is found that the beamforming designed on the elliptical curve covers longer railway than beamforming designed on the railway directly,and the coverage of elliptical cell based beamforming can be increased with the eccentricity.In addition,beamforming with the improvedβ-fairness power allocation can further improve the railway coverage and mobile service amount simultaneously.Moreover,it is shown that the larger eccentricity of the ellipse with appropriately chosen BS location,the larger coverage distance.展开更多
基金supported in part by the Natural Science Foundation of China(NSFC)under Grant 62071044 and Grant 62088101in part by the Shandong Province Natural Science Foundation under Grant ZR2022YQ62in part by the Beijing Nova Program.
文摘The current High-Speed Railway(HSR)communications increasingly fail to satisfy the massive access services of numerous user equipment brought by the increasing number of people traveling by HSRs.To this end,this paper investigates millimeter-Wave(mmWave)extra-large scale(XL)-MIMO-based massive Internet-of-Things(loT)access in near-field HSR communications,and proposes a block simultaneous orthogonal matching pursuit(B-SOMP)-based Active User Detection(AUD)and Channel Estimation(CE)scheme by exploiting the spatial block sparsity of the XLMIMO-based massive access channels.Specifically,we first model the uplink mmWave XL-MIMO channels,which exhibit the near-field propagation characteristics of electromagnetic signals and the spatial non-stationarity of mmWave XL-MIMO arrays.By exploiting the spatial block sparsity and common frequency-domain sparsity pattern of massive access channels,the joint AUD and CE problem can be then formulated as a Multiple Measurement Vectors Compressive Sensing(MIMV-CS)problem.Based on the designed sensing matrix,a B-SOMP algorithm is proposed to achieve joint AUD and CE.Finally,simulation results show that the proposed solution can obtain a better AUD and CE performance than the conventional CS-based scheme for massive IoT access in near-field HSR communications.
基金supported by the Beijing Municipal Natural Science Foundation under Grant 4174102the National Natural Science Foundation of China under Grant 61701017+1 种基金the Open Research Fund through the National Mobile Communications Research Laboratory, Southeast University, under Grant 2018D11the Fundamental Research Funds for the Central Universities under Grant 2018JBM003
文摘This paper investigates the cross-correlation characteristics of large-scale parameters(LSPs) and small-scale fading(SSF) for high-speed railway(HSR) multilink propagation scenarios, based on realistic measurements conducted on Beijing to Tianjin HSR line in China. A long-term evolution-based channel sounding system is utilized in the measurements to obtain the channel data. By applying a proposed time-delay based dynamic partition method, multi-link channel impulse responses are extracted from the raw channel data. Then, the statistical results of LSPs, including shadow fading, K-factor, and root-mean-square delay spread are derived and the cross-correlation coefficients of these LPSs are calculated. Moreover, the SSF spatial correlation and cross-correlation of SSF are analyzed. These results can be used to exploit multi-link channel model and to optimize the next-generation HSR communication system.
文摘In the new era of railways, infrastructure, trains and travelers will be interconnected. In order to realize a seamless high-data rate wireless connectivity, up to dozens of GHz bandwidth is required. This motivates the exploration of the underutilized millimeter wave (mmWave) as well as the largely unexplored THz band. In this paper, we first identify relevant communication scenarios for railway applications. Then the specific challenges and estimates of the bandwidth requirements for high-data rate railway connec-tivity in these communication scenarios are described. Finally, we outline the major challenges on propagation channel modeling and provide a technical route for further studies.
基金supported by the National Natural Science Foundation of China(62001519)the State Key Laboratory of Advanced Rail Autonomous Operation(RCS2022ZZ004).
文摘Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing system performance.Ray tracing is an effective method to investigate propagation characteristics in a complex environment,and how to quickly and accurately obtain environmental information needs to be solved.This paper presents dynamic environment reconstruction and ray tracing simulation in railway tunnel environment based on Simultaneous Localization and Mapping(SLAM)algorithm and Poisson reconstruction algorithm.Accurate channel parameters are obtained and analyzed based on ray tracing simulation.Both straight and curved tunnels are considered and investigated,and the results show the channel characteristics in complex railway tunnel environments.
文摘An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are complex and diverse,so it is indispensable to test and verify the railway 5G before actual deployment.The design and creation of the railway 5G integrated innovation test platform provides engineering design,test and verification conditions for the networking,coverage and business development of 5G public networks and 5G-R in railway scenarios.This paper introduces the design of the overall architecture for the integrated railway 5G innovation test platform according to the railway network requirements,application scenarios and intelligent development trend;respectively elaborates on the design of the 5G-R core network,bearer network and wireless access along loop tracks,in combination with the characteristics of railway scenarios and the requirements of railway dispatching,operation and safety;raises further solutions on the network deployment and coverage schemes of 5G public networks so as to meet the application requirements of 5G public networks.The study results show that the integrated railway 5G innovation test platform scheme contains co-existence of 5G public and private networks,combines the indoor and outdoor scenarios,as well as takes into account of the dynamic and static tests so as to meet the environmental requirements for the integrated railway 5G test and application of all network functions,for which it can provide comprehensive technical support for railway 5G technology research and development,standard formulation,testing,etc.
文摘The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technical routes of railway next-generation mobile communication determined by China State Railway Group Co.,Ltd.From the aspects of work objectives,principles,technical routes and innovative working methods,the paper elaborates the ideas of railway 5G scientific and technological research,puts forward the contents and plans of scientific and technological research on railway 5G private network,systematically organizes the achievements in the scientific and technological research stage of railway 5G private network,and sets forth the key contents of next-step scientific and technological research.
基金This work has been supported in part by the National Natural Science Foundation of China(61671205)in part by the Shanghai Rising-Star Program(21QA1402700)in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University(No.2020D02).
文摘In this paper,a beamforming scheme to improve the coverage in high-speed railway communication systems is investigated.A dedicated coverage model,where the coverage cell is an ellipse rather than the traditional circular or linear,is considered.Based on the elliptical coverage cell,an optimization problem for the beamforming design is formulated to maximize the percentage of railway coverage,subject to the constraints on equal expected designed propagation gain(the gain obtained by a combination of designed beam and propagation channel)on the elliptical curve,i.e.,the expectation of designed propagation gain on the elliptical curve are all equal.Considering that the coverage can be improved by increasing the minimum designed propagation gain on the railway,the problem can be recast to maximizing the equal expected designed propagation gain on the elliptical curve.Subsequently,a beamforming design with an improved β-fairness power allocation,where the optimization problem is formulated to maximize the minimum expected received power over time with the constraints on elliptical cell based beamforming and mobile service amount,is proposed to further improve the coverage.An alternating iteration algorithm is developed to find the optimal beamforming vector and the instantaneous transmit power.Through numerical results,it is found that the beamforming designed on the elliptical curve covers longer railway than beamforming designed on the railway directly,and the coverage of elliptical cell based beamforming can be increased with the eccentricity.In addition,beamforming with the improvedβ-fairness power allocation can further improve the railway coverage and mobile service amount simultaneously.Moreover,it is shown that the larger eccentricity of the ellipse with appropriately chosen BS location,the larger coverage distance.