Rain is one of the main sources of error in dual-frequency altimeter Jason-1 wind measurement. In this study, a new radar altimeter backscatter model is proposed and validated to eliminate rain effects. The model take...Rain is one of the main sources of error in dual-frequency altimeter Jason-1 wind measurement. In this study, a new radar altimeter backscatter model is proposed and validated to eliminate rain effects. The model takes into account attenuation, volume backscattering, and sea surface perturbation by raindrops under rain conditions. A match-up dataset is built to evaluate rain effects, in combination with the Jason-1 normalized radar cross section, precipitation radar data from the Tropical Rainfall Measuring Mission, and sea surface wind reanalysis data from the European Centre for Medium-Range Weather Forecasts. The results show that rain-induced surface perturbation backscatter increases with rain rate at Ku-band, but their correlation at C-band is poor. In addition, rain surface perturbation and attenuation have major effects on radar altimeter wind measurements. Finally, a rain correction model for Jason-1 winds is developed and validation results prove its ability to reduce rain-induced inaccuracies in wind retrievals.展开更多
Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents...Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.展开更多
According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called CMF+Rai...According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called CMF+Rain). The CMF+Rain model which is based on the NASA scatterometer-2 (NSCAT2) GMF is presented to compensate for the effects of rain on cyclone wind retrieval. With the multiple solution scheme (MSS), the noise of wind retrieval is effectively suppressed, but the influence of the background increases. It will cause a large wind direction error in ambiguity removal when the background error is large. However, this can be mitigated by the new ambiguity removal method of Tikhonov regularization as proved in the simulation experiments. A case study on an extratropical cyclone of hurricane observed with SeaWinds at 25-km resolution shows that the retrieved wind speed for areas with rain is in better agreement with that derived from the best track analysis for the GMF+Rain model, but the wind direction obtained with the two-dimensional variational (2DVAR) ambiguity removal is incorrect. The new method of Tikhonov regularization effectively improves the performance of wind direction ambiguity removal through choosing appropriate regularization parameters and the retrieved wind speed is almost the same as that obtained from the 2DVAR.展开更多
Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMO...Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMORPH) rain rate is introduced to a match-up dataset and then put into a rain correction model to remove rain effects on "Jason-1" normalized radar cross section (NRCS); Hurricane Research Division (HRD) wind sPeed, which integrates all available surface weather observations, is used to substitute in situ data for establishing this relationship with "Jason-l" NRCS. Then, an improved "Jason-l" wind retrieval algorithm under tropical cyclone conditions is proposed. Seven tropical cyclones from 2003 to 2010 are studied to validate the new algorithm. The experimental results indicate that the standard deviation of this algorithm at C-band and Ku-band is 1.99 and 2.75 m/s respectively, which is better than the existing algorithms. In addition, the C-band algorithm is more suitable for sea surface wind retrieval than Ku-band under tropical cyclone conditions.展开更多
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.Y0S04300KB)the Major Program for the Research Equipment of Chinese Academy of Sciences (No.YZ200946)
文摘Rain is one of the main sources of error in dual-frequency altimeter Jason-1 wind measurement. In this study, a new radar altimeter backscatter model is proposed and validated to eliminate rain effects. The model takes into account attenuation, volume backscattering, and sea surface perturbation by raindrops under rain conditions. A match-up dataset is built to evaluate rain effects, in combination with the Jason-1 normalized radar cross section, precipitation radar data from the Tropical Rainfall Measuring Mission, and sea surface wind reanalysis data from the European Centre for Medium-Range Weather Forecasts. The results show that rain-induced surface perturbation backscatter increases with rain rate at Ku-band, but their correlation at C-band is poor. In addition, rain surface perturbation and attenuation have major effects on radar altimeter wind measurements. Finally, a rain correction model for Jason-1 winds is developed and validation results prove its ability to reduce rain-induced inaccuracies in wind retrievals.
文摘Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.
基金Project supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called CMF+Rain). The CMF+Rain model which is based on the NASA scatterometer-2 (NSCAT2) GMF is presented to compensate for the effects of rain on cyclone wind retrieval. With the multiple solution scheme (MSS), the noise of wind retrieval is effectively suppressed, but the influence of the background increases. It will cause a large wind direction error in ambiguity removal when the background error is large. However, this can be mitigated by the new ambiguity removal method of Tikhonov regularization as proved in the simulation experiments. A case study on an extratropical cyclone of hurricane observed with SeaWinds at 25-km resolution shows that the retrieved wind speed for areas with rain is in better agreement with that derived from the best track analysis for the GMF+Rain model, but the wind direction obtained with the two-dimensional variational (2DVAR) ambiguity removal is incorrect. The new method of Tikhonov regularization effectively improves the performance of wind direction ambiguity removal through choosing appropriate regularization parameters and the retrieved wind speed is almost the same as that obtained from the 2DVAR.
基金The National Natural Science Foundation of China under Nos 41201350 and 41228007the International Scientific and Technological Cooperation Projects of State Oceanic Adminstration under contact No.2011DFA22260the Knowledge Innovation Program of the Chinese Academy of Sciences under contact No.Y0S04300KB
文摘Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMORPH) rain rate is introduced to a match-up dataset and then put into a rain correction model to remove rain effects on "Jason-1" normalized radar cross section (NRCS); Hurricane Research Division (HRD) wind sPeed, which integrates all available surface weather observations, is used to substitute in situ data for establishing this relationship with "Jason-l" NRCS. Then, an improved "Jason-l" wind retrieval algorithm under tropical cyclone conditions is proposed. Seven tropical cyclones from 2003 to 2010 are studied to validate the new algorithm. The experimental results indicate that the standard deviation of this algorithm at C-band and Ku-band is 1.99 and 2.75 m/s respectively, which is better than the existing algorithms. In addition, the C-band algorithm is more suitable for sea surface wind retrieval than Ku-band under tropical cyclone conditions.