期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Rainfall partitioning by desert shrubs in arid regions 被引量:1
1
作者 Bing Liu, WenZhi Zhao Linze Inland River Basin Research Station, Laboratory of Heihe River Eco-Hydrology and Basin Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China 《Research in Cold and Arid Regions》 2009年第3期215-229,共15页
We measured the rainfall partitioning among throughfall, stemflow, and interception by desert shrubs in an arid region of China, and analyzed the influence of rainfall and canopy characteristics on this partitioning a... We measured the rainfall partitioning among throughfall, stemflow, and interception by desert shrubs in an arid region of China, and analyzed the influence of rainfall and canopy characteristics on this partitioning and its ecohydrological effects. The percent-ages of total rainfall accounted for by throughfall, stemflow, and interception ranged from 78.85±2.78 percent to 86.29±5.07 per-cent, from 5.50±3.73 percent to 8.47±4.19 percent, and from 7.54±2.36 percent to 15.95±4.70 percent, respectively, for the four shrubs in our study (Haloxylon ammodendron, Elaeagnus angustifolia, Tamarix ramosissima, and Nitraria sphaerocarpa). Rain-fall was significantly linearly correlated with throughfall, stemflow, and interception (P < 0.0001). The throughfall, stemflow, and interception percentages were logarithmically related to total rainfall (P < 0.01), but were quadratically related to the maximum 1-hour rainfall intensity (P < 0.01). The throughfall and stemflow percentages increased significantly with increasing values of the rainfall characteristics, whereas the interception percentage generally decreased (except for average wind speed, air temperature, and canopy evaporation). Regression analysis suggested that the stemflow percentage increased significantly with increasing crown length, number of branches, and branch angle (R2 = 0.92, P < 0.001). The interception percentage increased significantly with increasing LAI (leaf area index) and crown length, but decreased with increasing branch angle (R2 = 0.96, P < 0.001). The mean funnelling percentages for the four shrubs ranged from 30.27±4.86 percent to 164.37±6.41 percent of the bulk precipitation. Much of the precipitation was funnelled toward the basal area of the stem, confirming that shrub stemflow conserved in deep soil layers may be an available moisture source to support plant survival and growth under arid conditions. 展开更多
关键词 desert shrubs rainfall characteristics canopy characteristics rainfall partitioning ecohydrological effects
下载PDF
Rainfall Partitioning for Integrated Water Resources Management: Case Study of Upper Blue Nile Basin, Ethiopia
2
作者 Mastewal Ejigu Ademe 《Journal of Agricultural Science and Technology(A)》 2015年第8期664-670,共7页
The Upper Blue Nile Basin, the highest sources of the Nile River flow through this area, is still under severe land degradation, which aggravates water scarcity. The productivity of subsistence farming is below 50% of... The Upper Blue Nile Basin, the highest sources of the Nile River flow through this area, is still under severe land degradation, which aggravates water scarcity. The productivity of subsistence farming is below 50% of the potential of agriculture, mainly because of inappropriate rainwater management. At farm level, rainwater is exposed to poor partitioning described as flooding, land degradation, siltation and water scarcity for domestic, irrigation, hydropower and environmental uses in the basin. Hence, it is one of the root causes of food-insecurity in the region. To reverse this situation and achieve increased rainwater productivity knowledge of rainfall partitioning at grassroots level is significantly important. However, rainwater partitioning and partitioning points are not clearly known by farmers in the area. Besides, understanding water-routes helps to manage rainwater with integrated water resources management (IWRM) processes. The objective of this study was to identify the knowledge gap of farmers and experts on rainwater partitioning that help for increased water productivity. Intensive monitoring and interviews have been carried out for 81 farmers and 22 local experts in three pilot sites. The interviewed farmers and experts are clearly aware of the runoff partitioning, since it is easily observable. While, only 10% of the farmers and 25% of experts know about evaporation partitioning, which is the largest compared to other losses. The paper gives recommendations for better understanding of rainfall partitioning points and management of water-routes at grassroots level to increase rainwater productivity and enhance food security in the area with IWRM processes. 展开更多
关键词 Blue Nile KNOWLEDGE rainfall partitioning water loss water-routes.
下载PDF
Effects of Vertical Wind Shear on the Pre-Summer Heavy Rainfall Budget:A Cloud-Resolving Modeling Study
3
作者 SHEN Xin-Yong QING Tao +1 位作者 HUANG Wen-Yan LI Xiao-Fan 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第1期44-51,共8页
This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensiti... This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensitivity experiments for a pre-summer heavy rainfall event over southern China from 3-8 June 2008 coupled with National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) data.The rainfall partitioning analysis based on the surface rainfall budget indicates that the exclusion of vertical wind shear decreases the contribution to total rainfall from the largest contributor,which is the rainfall associated with local atmospheric drying,water vapor divergence,and hydrometeor loss/convergence,through the reduction of the rainfall area and reduced rainfall during the rainfall event.The removal of vertical wind shear increases the contribution to total rainfall from the rainfall associated with local atmospheric drying,water vapor convergence,and hydrometeor loss/convergence through the expansion of the rainfall area and enhanced rainfall.The elimination of vertical wind shear enhances heavy rainfall and expands its area,whereas it reduces moderate rainfall and its area. 展开更多
关键词 cloud-resolving model simulation vertical wind shear rainfall partitioning surface rainfall budget
下载PDF
CONVECTIVE-STRATIFORM RAINFALL PARTITION BY RADIANCE-DERIVED CLOUD CONTENT:A MODELING STUDY
4
作者 沈新勇 梅海霞 +1 位作者 庆涛 李小凡 《Journal of Tropical Meteorology》 SCIE 2016年第2期182-190,共9页
A new scheme that separates convective-stratiform rainfall is developed using threshold values of liquid water path(LWP) and ice water path(IWP).These cloud contents can be predicted with radiances at the Advanced Mic... A new scheme that separates convective-stratiform rainfall is developed using threshold values of liquid water path(LWP) and ice water path(IWP).These cloud contents can be predicted with radiances at the Advanced Microwave Sounding Unit(AMSU) channels(23.8,31.4,89,and 150 GHz) through linear regression models.The scheme is demonstrated by an analysis of a two-dimensional cloud resolving model simulation that is imposed by a forcing derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The rainfall is considered convective if associated LWP is larger than 1.91 mm or IWP is larger than1.70 mm.Otherwise,the rainfall is stratiform.The analysis of surface rainfall budget demonstrates that this new scheme is physically meaningful. 展开更多
关键词 cloud-resolving model simulation radiance transfer model radiance temperature simulation convective-stratiform rainfall partition liquid water path ice water path
下载PDF
Temporal and Spatial Scale Dependence of Precipitation Analysis over the Tropical Deep Convective Regime
5
作者 沈新勇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第6期1390-1394,共5页
Data from Goddard cumulus ensemble model experiment are used to study temporal and spatial scale dependence of tropical rainfall separation analysis based on cloud budget during Tropical Ocean Global Atmosphere Couple... Data from Goddard cumulus ensemble model experiment are used to study temporal and spatial scale dependence of tropical rainfall separation analysis based on cloud budget during Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE). The analysis shows that the calculations of model domain mean or time-mean grid-scale mean simulation data overestimate the rain rates of the two rainfall types associated with net condensation but they severely underestimate the rain rate of the rainfall type associated with net evaporation and hydrometeor convergence. 展开更多
关键词 cloud microphysical budget temporal and spatial scale rainfall partitioning analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部