Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai...Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system.展开更多
The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass...The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass×harvest index(HI)”method to simulate regional-scale winter wheat yield.However,spatiotemporal differences in HI contribute to inaccuracies in yield simulation at the regional scale.Time-series dry matter partition coefficients(Fr)can dynamically reflect the dry matter partition of winter wheat.In this study,Fr equations were fitted for each organ of winter wheat using site-scale data.These equations were then coupled into a process-based and remote sensingdriven crop yield model for wheat(PRYM-Wheat)to improve the regional simulation of winter wheat yield over the North China Plain(NCP).The improved PRYM-Wheat model integrated with the fitted Fr equations(PRYM-Wheat-Fr)was validated using data obtained from provincial yearbooks.A 3-year(2000-2002)averaged validation showed that PRYM-Wheat-Fr had a higher coefficient of determination(R^(2)=0.55)and lower root mean square error(RMSE=0.94 t ha^(-1))than PRYM-Wheat with a stable HI(abbreviated as PRYM-Wheat-HI),which had R^(2) and RMSE values of 0.30 and 1.62 t ha^(-1),respectively.The PRYM-Wheat-Fr model also performed better than PRYM-Wheat-HI for simulating yield in verification years(2013-2015).In conclusion,the PRYM-Wheat-Fr model exhibited a better accuracy than the original PRYM-Wheat model,making it a useful tool for the simulation of regional winter wheat yield.展开更多
The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been repor...The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been reported yet in the epicenter area.Thus,this earthquake presents a unique opportunity to delve into the buried active faults beneath the NCP.By integrating strong ground motion records,high-precision aftershock sequence relocation,and focal mechanism solutions,we gain insights into the seismotectonics of the Pingyuan earthquake.The aftershocks are clustered at depths ranging from 15 to 20 km and delineate a NE-SW trend,consistent with the distribution of ground motion records.A NE-SW nodal plane(226°)of the focal mechanism solutions is also derived from regional waveform inversion,suggesting that the mainshock was dominated by strike-slip motion with minor normal faulting component.Integrating regional geological data,we propose that an unrecognized fault between the NE-SW trending Gaotang and Lingxian-Yangxin faults is the seismogenic fault of this event.Based on the S-wave velocity structure beneath the NCP,this fault probably extends into the lower crust with a high angle.Considering the tectonic regime and stress state,we speculate that the interplay of shear strain between the Amurian and South China blocks and the hot upwelling magma from the subducted paleo Pacific flat slab significantly contributed to the generation of the Pingyuan earthquake.展开更多
At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of...At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.展开更多
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar...The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.展开更多
The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization origi...The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.展开更多
Based on the reanalysis data of the National Center for Environmental Prediction(NCEP)and the precipitation dataset of the U.S.Climate Prediction Center(CPC),the changing trend of summer precipitation in North China(3...Based on the reanalysis data of the National Center for Environmental Prediction(NCEP)and the precipitation dataset of the U.S.Climate Prediction Center(CPC),the changing trend of summer precipitation in North China(35°-40°N,110°-125°E)during 1979-2020 was studied.By calculating the monthly climatic precipitation in North China,it is found that precipitation was mainly distributed from June to August,so the trend of precipitation in North China from June to August was mainly analyzed.Firstly,the five-point moving average of regional mean precipitation in North China from June to August during 1979-2020 was conducted.It is found that the fitting curve of the five-point sliding average was basically consistent with the changing trend of regional precipitation,and it showed a certain upward trend.Secondly,the cumulative anomaly of regional average summer precipitation in North China showed a significant upward trend after 2005,which was similar to the moving average result,indicating that the precipitation in the later period increased compared with the earlier period.The changing trend of summer precipitation in North China in the past 42 years was analyzed,and the results show that precipitation showed a significant increasing trend in most areas of North China,so that regional average precipitation also tended to increase significantly.By comparing the precipitation in the past five years(2016-2020)and the last 36 years(1979-2015),it is found that the increase of summer precipitation in North China was more obvious,so the reasons for the increase in precipitation were further analyzed.Since the occurrence of precipitation requires favorable thermal dynamic conditions,the one-dimensional linear regression of water vapor content at 850 hPa and meridional wind speed was conduced,and it is found that the two variables tended to increase obviously,which was consistent with the increasing trend of precipitation.Seen from both the results of regional average and the spatial distribution of trends,the lower atmospheric water vapor content and wind speed showed a significant positive trend,which led to the increase of summer precipitation.Therefore,it can be concluded that there was a certain changing trend of summer precipitation in North China in the past 42 years,which can provide certain reference for the future forecast of summer precipitation in North China.展开更多
Extremely heavy rainfall occurred over both Northwest India and North China in September 2021.The precipitation anomalies were 4.1 and 6.2 times interannual standard deviation over the two regions,respectively,and bro...Extremely heavy rainfall occurred over both Northwest India and North China in September 2021.The precipitation anomalies were 4.1 and 6.2 times interannual standard deviation over the two regions,respectively,and broke the record since the observational data were available,i.e.,1901 for India and 1951 for China.In this month,the Asian uppertropospheric westerly jet was greatly displaced poleward over West Asia,and correspondingly,an anomalous cyclone appeared over India.The anomalous cyclone transported abundant water vapor into Northwest India,leading to the heavy rainfall there.In addition,the Silk Road pattern,a teleconnection pattern of upper-level meridional wind over the Eurasian continent and fueled by the heavy rainfall in Northwest India,contributed to the heavy rainfall in North China.Our study emphasizes the roles of atmospheric teleconnection patterns in concurrent rainfall extremes in the two regions far away from each other,and the occurrence of rainfall extremes during the post-or pre-monsoon period in the northern margins of monsoon regions.展开更多
The Trans-North China Orogen is a major Neoarchean Paleoproterozoic collisional orogenic belt above the North China Craton, formed due to prolonged and complex processes. Even though many NeoarcheanPaleoproterozoic ma...The Trans-North China Orogen is a major Neoarchean Paleoproterozoic collisional orogenic belt above the North China Craton, formed due to prolonged and complex processes. Even though many NeoarcheanPaleoproterozoic magmatic and metamorphic activities have been reported, due to the Huozhou Complex’s small outcropping range, little attention has been paid to the origin of various igneous rocks of the Huozhou Complex in the center of the Trans-North China Orogen. The Huozhou Complex, located south of the Luè liang, Wutai, and Hengshan complexes, is an important window into the Early Precambrian structure and evolution of the North China Craton. Its magma and metamorphism are crucial to understanding the development of the structural evolution of the Trans-North China Orogen. The Huozhou metamorphic complex area exposes a range of Precambrian metamorphic rocks, among which the most extensively dispersed is felsic biotite plagioclase gneiss. In this study comprehensive geological field survey, micropetrology,chronology, geochemistry, and Hf isotope analysis were carried out for the Qinggangping and Anziping gneiss in the north of the Huozhou Complex. The results show that the magmatic zircon age of the Qinggangping gneiss is2196 ± 14 Ma, and its protolith is I-type granite, formed by partial melting of igneous rocks in the absence of weathering. Its source is mainly the juvenile crust from depleted mantle dating 2431–2719 Ma, with a small amount of mantle-derived material. The Anziping gneiss has a metamorphic zircon age of 1931 ± 13 Ma with an S-type granite protolith belonging to peraluminous granite.The Anziping gneiss is formed by recycling pre-existing crustal components at 2613–2848 Ma. A minor quantity of mantle-derived magma is also introduced to the crust simultaneously. The samples of Qinggangping gneiss and Anziping gneiss show the characteristics of obvious negative Nb, Ti, and P elements in the spider diagram of primitive mantle standardization. This implies that the rocks have the characteristics of magmatic rocks in an island arc or subduction environment, which could have formed in the tectonic environment of the continental margin arc.展开更多
Tonstein layers are found worldwide in the Permo-Carboniferous coal-bearing strata.This study investigates the geochronology,mineralogy,and geochemistry of four tonstein samples from the Permo-Carboniferous Benxi Form...Tonstein layers are found worldwide in the Permo-Carboniferous coal-bearing strata.This study investigates the geochronology,mineralogy,and geochemistry of four tonstein samples from the Permo-Carboniferous Benxi Formation,Ordos Basin,North China Craton(NCC).The typical features of the studied tonsteins include thin beds,lateral continuity,angular quartz grains,and euhedral zircons with similar U-Pb ages,indicating a significant pyroclastic origin.In addition,the tonstein samples have low TiO_(2)/Al_(2)O_(3)ratios(<0.02)and rare earth elements and yttrium(REY)concentrations with obvious negative Eu anomalies,indicating that the tonsteins have a felsic magma origin.Moreover,compared with the mean composition of clay shale,the studied tonsteins are characterized by high concentrations of the elements Nb and Ta,which may affect the concentration of the corresponding elements in surrounding coal seams.The zircon U-Pb ages of the tonsteins(293.9-298.8 Ma)provide a precise chronological framework on the Benxi Formation in the Ordos Basin,constraining the Gzhelian-Aselian stages.The tonsteins were probably sourced from arc volcanism along the western margin of the NCC during the early Permian,implying that the Alxa Terrane had not amalgamated with the NCC at that time.展开更多
Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to ac...Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.Thus,we proposed a new approach to approximating irrigations of winter wheat over the North China Plain(NCP),where irrigation occurs extensively during the winter wheat growing season.This approach used irrigation pattern parameters(IPPs)to define the irrigation frequency and timing.Then,they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat(PRYM–Wheat),to improve the regional estimates of winter wheat over the NCP.The IPPs were determined using statistical yield data of reference years(2010–2015)over the NCP.Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield,with an increase and decrease in the correlation coefficient(R)and root mean square error(RMSE)of 0.15(about 37%)and 0.90 t ha–1(about 41%),respectively.The data in validation years(2001–2009 and 2016–2019)were used to validate PRYM–Wheat.In addition,our findings also showed R(RMSE)of 0.80(0.62 t ha–1)on a site level,0.61(0.91 t ha–1)for Hebei Province on a county level,0.73(0.97 t ha–1)for Henan Province on a county level,and 0.55(0.75 t ha–1)for Shandong Province on a city level.Overall,PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years,providing a scientific basis for ensuring regional food security.展开更多
Understanding the spatial distribution of the crop yield gap(YG)is essential for improving crop yields.Recent studies have typically focused on the site scale,which may lead to considerable uncertainties when scaled t...Understanding the spatial distribution of the crop yield gap(YG)is essential for improving crop yields.Recent studies have typically focused on the site scale,which may lead to considerable uncertainties when scaled to the regional scale.To mitigate this issue,this study used a process-based and remote sensing driven crop yield model for winter wheat(PRYM-Wheat),which was derived from the boreal ecosystem productivity simulator(BEPS),to simulate the YG of winter wheat in the North China Plain from 2015 to 2019.Yield validation based on statistical yield data revealed good performance of the PRYM-Wheat Model in simulating winter wheat actual yield(Ya).The distribution of Ya across the North China Plain showed great heterogeneity,decreasing from southeast to northwest.The remote sensing-estimated results show that the average YG of the study area was 6400.6 kg ha^(–1).The YG of Jiangsu Province was the largest,at7307.4 kg ha^(–1),while the YG of Anhui Province was the smallest,at 5842.1 kg ha^(–1).An analysis of the responses of YG to environmental factors showed no obvious correlation between YG and precipitation,but there was a weak negative correlation between YG and accumulated temperature.In addition,the YG was positively correlated with elevation.In general,studying the specific features of the YG can provide directions for increasing crop yields in the future.展开更多
The North China Plain is one of the main grain producing areas in China. However, overexploitation has long been unsustainable since the water supply is mainly from groundwater. Since 2014,the South-to-North Water Div...The North China Plain is one of the main grain producing areas in China. However, overexploitation has long been unsustainable since the water supply is mainly from groundwater. Since 2014,the South-to-North Water Diversion Project's central route has been charted to the integrated management of water supply and over-exploitation, which has alleviated the problem to a certain extent. Although the Ministry of Water Resources has made many efforts on groundwater recharge since 2018 most of which have been successful, the recharge has not yet been sufficiently focused on the repair of shallow groundwater depression zones. It still needs further optimization. This paper discusses this particular issue,proposes optimized recharge plan and provides the following recommendations:(1) Seven priority target areas are selected for groundwater recharge in alluvial and proluvial fans in the piedmont plain, and the storage capacity is estimated to be 181.00×10~8 m~3;(2) A recharge of 31.18×10~8 m~3/a is required by 2035 to achieve the repair target;(3) It is proposed to increase the recharge of Hutuo River, Dasha River and Tanghe River to 19.00×10~8 m~3/a and to rehabilitate Gaoliqing-Ningbailong Depression Zone;increase the recharge of Fuyang River, Zhanghe River and Anyang River to 7.05×10~8 m~3/a and rehabilitate Handan Feixiang-Guangping Depression Zone;increase the recharge of Luanhe River by 0.56×10~8 m~3/a and restore Tanghai Depression Zone and Luanan-Leting Depression Zone;moderately reduce the amount of water recharged to North Canal and Yongding River to prevent excessive rebound of groundwater;(4) Recharge through well is implemented on a pilot basis in areas of severe urban ground subsidence and coastal saltwater intrusion;(5) An early warning mechanism for groundwater quality risks in recharge areas is established to ensure the safety. The numerical groundwater flow model also proves reasonable groundwater level restoration in the depression zones by 2035.展开更多
The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed rive...The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed river terraces of its tributary,the Yixun River,provide excellent information for studying neotectonics and climate change.There are seven terraces in the lower reaches of the Yixun River,numbered T7-T1.The optically stimulated luminescence dating results of 23 samples show that terraces T7-T2 formed at 111.36±5.83 ka,78.20±4.45 ka,65.29±4.15 ka,56.44±3.07 ka,40.08±2.66 ka,and 13.14±0.76 ka,respectively.A comparison with the oxygen isotope curves of deep-sea sediments reveals that the sediment formation of each terrace corresponded to cold periods of marine isotope stages MIS 4 and MIS 2 and the relatively cold periods of MIS 5e,MIS 3,and MIS 1.Since the Late Pleistocene,the incision rate of the Yixun River has ranged from 0.371-1.740 mm/a.During the formation of T7-T6,T5-T4,T4-T3,and T3-T2,the incision rate was low.However,in the two stages during which T6-T5 and T2-T1 formed(13.14±0.76 ka to 0.58±0.08 ka and 10.79±0.64 ka to 0.16±0.01 ka),these rates reached 1.554 mm/a and 1.592-1.740 mm/a,respectively.At approximately 30 ka,the activity of the Langying Fault increased,leading to footwall uplift.The river gathered in the north of Langying to form the ancient Erdaowan Lake,which resulted in the drying of the river in the lower reaches of the Yixun River during the last glacial maximum without forming river deposits.In the Early Holocene,headward erosion in the lower reaches of the Yixun River was enhanced,which resulted in the disappearance of the lake,and incised meandering formed due to increased neotectonism.Based on the analyses of river incision and the formation of ancient lakes and incised meandering,it was inferred that there have been three periods of strong tectonism in the river basin since the Late Pleistocene.展开更多
We studied an Archean mafic dike in the TransNorth China Orogen of the North China Craton, which has a magmatic age of 2701 ± 83 Ma and is currently the oldest mafic dike in the North China Craton. Such an old di...We studied an Archean mafic dike in the TransNorth China Orogen of the North China Craton, which has a magmatic age of 2701 ± 83 Ma and is currently the oldest mafic dike in the North China Craton. Such an old dike is extremely rare in the world. The presence of mafic dikes indicates that the North China Craton was in a tensional tectonic environment at 2.7 Ga. Geochemical characteristics reveal that this mafic dike belongs to continental tholeiitic basalt. Results from Hf isotope analysis reveal that the mafic dike originates from a depleted mantle. The plate assembly in the North China landmass was realized during the Archean era(2.7 Ga), and a thick and stable continental crust was formed. Therefore, the first cratonization of the North China Craton was completed before 2.7 Ga. The intrusion of the 2.7-Ga-old mafic dike from the deep lithospheric mantle of the continent indicates that the North China Craton has undergone a period of extensional tectonic activity. This event marks a significant extensional event that occurred after the cratonization of the North China Craton.展开更多
We investigated the meta-gabbronorites in Liangcheng and used detailed petrography,geochemistry,zircon geochronological and in-situ Hf isotopic studies to clarify their formation and metamorphic ages,petrogenesis,tect...We investigated the meta-gabbronorites in Liangcheng and used detailed petrography,geochemistry,zircon geochronological and in-situ Hf isotopic studies to clarify their formation and metamorphic ages,petrogenesis,tectonic setting and provide constraints on the tectonic evolution of Khondalite Belt(KB).The zircon U-Pb dating results show that the meta-gabbronorites crystallized at~1.94 Ga and were metamorphosed at~1.91–1.89 Ga.They can be subdivided into the low-Mg and high-Mg groups.The low-Mg meta-gabbronorites contain relatively lower MgO and higher SiO2 contents than high-Mg meta-gabbronorites.They are enriched in light rare earth elements and large ion lithophile elements,depleted in high field strength elements,and exhibit positive(high-Mg meta-gabbronorites)and negative(low-Mg metagabbronorites)Sr and Eu anomalies.The zircon in-situεHf(t)of meta-gabbronorites is 0.07–4.12,with Hf model ages(TDM)of 2169–2400 Ma.The meta-gabbronorites in Liangcheng originated from the asthenospheric mantle and experienced fractional crystallization of olivine,orthopyroxene,clinopyroxene,and plagioclase.They were contaminated by the crustal rocks(mainly khondalite series)during ascent,especially for low-Mg gabbronorites.The ridge subduction is the most plausible tectonic setting for meta-gabbronorites,indicating the eastern segment of KB was in a ridge subduction setting at~1.94 Ga following an orogenic thickening event during a prolonged orogenic process.展开更多
Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-...Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-normal precipitation during the first boreal spring, but above-normal precipitation during the second year. The difference in spring precipitation over southern China is correlative to the variation in western North Pacific anomalous cyclone(WNPC), which can in turn be attributed to the different sea surface temperature anomaly(SSTA) over the Tropical Pacific. The remote forcing of negative SSTA in the equatorial central and eastern Pacific and the local air-sea interaction in the western North Pacific are the usual causes of WNPC formation and maintenance.SSTA in the first spring is stronger than those in the second spring. As a result, the intensity of WNPC in the first year is stronger, which is more likely to reduce the moisture in southern China by changing the moisture transport, leading to prolonged precipitation deficits over southern China. However, the tropical SSTA signals in the second year are too weak to induce the formation and maintenance of WNPC and the below-normal precipitation over southern China. Thus, the variation in tropical SSTA signals between two consecutive springs during multiyear La Ni?a events leads to obvious differences in the spatial pattern of precipitation anomaly in southern China by causing the different WNPC response.展开更多
基金supported by Hebei Province Key Research Project(21327003D-1)Beijing Science and Technology Planning Project(Z221100006422005)+1 种基金China Postdoctoral Science Foundation(2023M743815)China Agriculture Research System(CARS301)。
文摘Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system.
基金supported by the National Natural Science Foundation of China(42101382 and 42201407)the Shandong Provincial Natural Science Foundation China(ZR2020QD016 and ZR2022QD120)。
文摘The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass×harvest index(HI)”method to simulate regional-scale winter wheat yield.However,spatiotemporal differences in HI contribute to inaccuracies in yield simulation at the regional scale.Time-series dry matter partition coefficients(Fr)can dynamically reflect the dry matter partition of winter wheat.In this study,Fr equations were fitted for each organ of winter wheat using site-scale data.These equations were then coupled into a process-based and remote sensingdriven crop yield model for wheat(PRYM-Wheat)to improve the regional simulation of winter wheat yield over the North China Plain(NCP).The improved PRYM-Wheat model integrated with the fitted Fr equations(PRYM-Wheat-Fr)was validated using data obtained from provincial yearbooks.A 3-year(2000-2002)averaged validation showed that PRYM-Wheat-Fr had a higher coefficient of determination(R^(2)=0.55)and lower root mean square error(RMSE=0.94 t ha^(-1))than PRYM-Wheat with a stable HI(abbreviated as PRYM-Wheat-HI),which had R^(2) and RMSE values of 0.30 and 1.62 t ha^(-1),respectively.The PRYM-Wheat-Fr model also performed better than PRYM-Wheat-HI for simulating yield in verification years(2013-2015).In conclusion,the PRYM-Wheat-Fr model exhibited a better accuracy than the original PRYM-Wheat model,making it a useful tool for the simulation of regional winter wheat yield.
基金supported from the National Natural Science Foundation of China(No.42374081)the Fundamental Research Funds for the Institute of Geophysics,China Earthquake Administration(Nos.DQJB23B22,DQJB22K36 and DQJB23Z04)Hong Research Grants Council(Nos.14306122 and 14308523)。
文摘The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been reported yet in the epicenter area.Thus,this earthquake presents a unique opportunity to delve into the buried active faults beneath the NCP.By integrating strong ground motion records,high-precision aftershock sequence relocation,and focal mechanism solutions,we gain insights into the seismotectonics of the Pingyuan earthquake.The aftershocks are clustered at depths ranging from 15 to 20 km and delineate a NE-SW trend,consistent with the distribution of ground motion records.A NE-SW nodal plane(226°)of the focal mechanism solutions is also derived from regional waveform inversion,suggesting that the mainshock was dominated by strike-slip motion with minor normal faulting component.Integrating regional geological data,we propose that an unrecognized fault between the NE-SW trending Gaotang and Lingxian-Yangxin faults is the seismogenic fault of this event.Based on the S-wave velocity structure beneath the NCP,this fault probably extends into the lower crust with a high angle.Considering the tectonic regime and stress state,we speculate that the interplay of shear strain between the Amurian and South China blocks and the hot upwelling magma from the subducted paleo Pacific flat slab significantly contributed to the generation of the Pingyuan earthquake.
基金The Natural gas formation rules and key technologies for exploration in the western exploration area KT2022A02the Science and Technology Fundamental Resources Investigation Program under contract No. 2023FY101500+2 种基金the National Key Research and Development Program of China under contract No. 2023YFC3012005the Central Public-interest Scientific Institution Basal Researchunder contract No. CEAIEF20230505。
文摘At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.
基金supported by the National Natural Science Foundation of China(Nos.41472065 and 42073059).
文摘The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.
基金financially supported by the project of the China Geological Survey(DD20230292,DD20242591)。
文摘The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.
文摘Based on the reanalysis data of the National Center for Environmental Prediction(NCEP)and the precipitation dataset of the U.S.Climate Prediction Center(CPC),the changing trend of summer precipitation in North China(35°-40°N,110°-125°E)during 1979-2020 was studied.By calculating the monthly climatic precipitation in North China,it is found that precipitation was mainly distributed from June to August,so the trend of precipitation in North China from June to August was mainly analyzed.Firstly,the five-point moving average of regional mean precipitation in North China from June to August during 1979-2020 was conducted.It is found that the fitting curve of the five-point sliding average was basically consistent with the changing trend of regional precipitation,and it showed a certain upward trend.Secondly,the cumulative anomaly of regional average summer precipitation in North China showed a significant upward trend after 2005,which was similar to the moving average result,indicating that the precipitation in the later period increased compared with the earlier period.The changing trend of summer precipitation in North China in the past 42 years was analyzed,and the results show that precipitation showed a significant increasing trend in most areas of North China,so that regional average precipitation also tended to increase significantly.By comparing the precipitation in the past five years(2016-2020)and the last 36 years(1979-2015),it is found that the increase of summer precipitation in North China was more obvious,so the reasons for the increase in precipitation were further analyzed.Since the occurrence of precipitation requires favorable thermal dynamic conditions,the one-dimensional linear regression of water vapor content at 850 hPa and meridional wind speed was conduced,and it is found that the two variables tended to increase obviously,which was consistent with the increasing trend of precipitation.Seen from both the results of regional average and the spatial distribution of trends,the lower atmospheric water vapor content and wind speed showed a significant positive trend,which led to the increase of summer precipitation.Therefore,it can be concluded that there was a certain changing trend of summer precipitation in North China in the past 42 years,which can provide certain reference for the future forecast of summer precipitation in North China.
基金funded by the National Natural Science Foundation of China[grant number 42105063]the Youth Training Project of the Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions[project number CAMT-202302]a funded project of Hengyang Normal University[project number 2022QD11].
基金This work was supported by the National Key R&D Program of China[grant number 2022YFC370110]the National Natural Science Foundation of China[grant numbers 42077194,42061134008,and 42377098]+1 种基金the Shanghai International Science and Technology Partnership Project[grant number 21230780200]the Shanghai General Project[grant number 23ZR1406100].
基金supported by the National Natural Science Foundation of China [grant number 41991281]the National Key R&D Program of China [grant number 2018YFA0606403]the National Natural Science Foundation of China [grant number 41790472]。
基金supported by the National Natural Science Foundation of China(Grant No.42105064)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)China Meteorological Administration program(Grant No.CXFZ2021J030)。
文摘Extremely heavy rainfall occurred over both Northwest India and North China in September 2021.The precipitation anomalies were 4.1 and 6.2 times interannual standard deviation over the two regions,respectively,and broke the record since the observational data were available,i.e.,1901 for India and 1951 for China.In this month,the Asian uppertropospheric westerly jet was greatly displaced poleward over West Asia,and correspondingly,an anomalous cyclone appeared over India.The anomalous cyclone transported abundant water vapor into Northwest India,leading to the heavy rainfall there.In addition,the Silk Road pattern,a teleconnection pattern of upper-level meridional wind over the Eurasian continent and fueled by the heavy rainfall in Northwest India,contributed to the heavy rainfall in North China.Our study emphasizes the roles of atmospheric teleconnection patterns in concurrent rainfall extremes in the two regions far away from each other,and the occurrence of rainfall extremes during the post-or pre-monsoon period in the northern margins of monsoon regions.
基金supported by the open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,Institute of Geology,Chinese Academy of Geological Sciences (Number J1901-16)the project of graduate education and teaching reform in Shanxi Province (Award Number 2021YJJG147)+3 种基金the teaching reform project ‘‘Geographic Modeling,Simulation and Visualization’’ established by Shanxi Normal University (Number 2019JGXM-39)‘‘The Research Start-up Fund of Shanxi Normal University for Dr. Peng Chong in 2016’’(Number0505/02070438)‘‘The Research Start-up Fund of Shanxi Normal University for Dr. Liu Haiyan in 2017’’(Number 0505/02070458)‘‘The Research Fund for Outstanding Doctor in 2017’’(Number0503/02010168)。
文摘The Trans-North China Orogen is a major Neoarchean Paleoproterozoic collisional orogenic belt above the North China Craton, formed due to prolonged and complex processes. Even though many NeoarcheanPaleoproterozoic magmatic and metamorphic activities have been reported, due to the Huozhou Complex’s small outcropping range, little attention has been paid to the origin of various igneous rocks of the Huozhou Complex in the center of the Trans-North China Orogen. The Huozhou Complex, located south of the Luè liang, Wutai, and Hengshan complexes, is an important window into the Early Precambrian structure and evolution of the North China Craton. Its magma and metamorphism are crucial to understanding the development of the structural evolution of the Trans-North China Orogen. The Huozhou metamorphic complex area exposes a range of Precambrian metamorphic rocks, among which the most extensively dispersed is felsic biotite plagioclase gneiss. In this study comprehensive geological field survey, micropetrology,chronology, geochemistry, and Hf isotope analysis were carried out for the Qinggangping and Anziping gneiss in the north of the Huozhou Complex. The results show that the magmatic zircon age of the Qinggangping gneiss is2196 ± 14 Ma, and its protolith is I-type granite, formed by partial melting of igneous rocks in the absence of weathering. Its source is mainly the juvenile crust from depleted mantle dating 2431–2719 Ma, with a small amount of mantle-derived material. The Anziping gneiss has a metamorphic zircon age of 1931 ± 13 Ma with an S-type granite protolith belonging to peraluminous granite.The Anziping gneiss is formed by recycling pre-existing crustal components at 2613–2848 Ma. A minor quantity of mantle-derived magma is also introduced to the crust simultaneously. The samples of Qinggangping gneiss and Anziping gneiss show the characteristics of obvious negative Nb, Ti, and P elements in the spider diagram of primitive mantle standardization. This implies that the rocks have the characteristics of magmatic rocks in an island arc or subduction environment, which could have formed in the tectonic environment of the continental margin arc.
基金supported by the National Natural Science Foundation of China(Grant Nos.41972170,42102127)Shandong Provincial Natural Science Foundation(Grant No.ZR2021QD087)+1 种基金Chinese Postdoctoral Science Foundation(Grant No.2021M702019)SDUST Research Fund(Grant No.2018TDJH101)。
文摘Tonstein layers are found worldwide in the Permo-Carboniferous coal-bearing strata.This study investigates the geochronology,mineralogy,and geochemistry of four tonstein samples from the Permo-Carboniferous Benxi Formation,Ordos Basin,North China Craton(NCC).The typical features of the studied tonsteins include thin beds,lateral continuity,angular quartz grains,and euhedral zircons with similar U-Pb ages,indicating a significant pyroclastic origin.In addition,the tonstein samples have low TiO_(2)/Al_(2)O_(3)ratios(<0.02)and rare earth elements and yttrium(REY)concentrations with obvious negative Eu anomalies,indicating that the tonsteins have a felsic magma origin.Moreover,compared with the mean composition of clay shale,the studied tonsteins are characterized by high concentrations of the elements Nb and Ta,which may affect the concentration of the corresponding elements in surrounding coal seams.The zircon U-Pb ages of the tonsteins(293.9-298.8 Ma)provide a precise chronological framework on the Benxi Formation in the Ordos Basin,constraining the Gzhelian-Aselian stages.The tonsteins were probably sourced from arc volcanism along the western margin of the NCC during the early Permian,implying that the Alxa Terrane had not amalgamated with the NCC at that time.
基金supported by the National Natural Science Foundation of China(42101382 and 41901342)the Shandong Provincial Natural Science Foundation(ZR2020QD016)the National Key Research and Development Program of China(2016YFD0300101).
文摘Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.Thus,we proposed a new approach to approximating irrigations of winter wheat over the North China Plain(NCP),where irrigation occurs extensively during the winter wheat growing season.This approach used irrigation pattern parameters(IPPs)to define the irrigation frequency and timing.Then,they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat(PRYM–Wheat),to improve the regional estimates of winter wheat over the NCP.The IPPs were determined using statistical yield data of reference years(2010–2015)over the NCP.Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield,with an increase and decrease in the correlation coefficient(R)and root mean square error(RMSE)of 0.15(about 37%)and 0.90 t ha–1(about 41%),respectively.The data in validation years(2001–2009 and 2016–2019)were used to validate PRYM–Wheat.In addition,our findings also showed R(RMSE)of 0.80(0.62 t ha–1)on a site level,0.61(0.91 t ha–1)for Hebei Province on a county level,0.73(0.97 t ha–1)for Henan Province on a county level,and 0.55(0.75 t ha–1)for Shandong Province on a city level.Overall,PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years,providing a scientific basis for ensuring regional food security.
基金the Shandong Key Research and Development Project,China(2018GNC110025)the National Natural Science Foundation of China(41871253)+2 种基金the Central Guiding Local Science and Technology Development Fund of Shandong—Yellow River Basin Collaborative Science and Technology Innovation Special Project,China(YDZX2023019)the Natural Science Foundation of Shandong Province,China(ZR2020QD016)the“Taishan Scholar”Project of Shandong Province,China(TSXZ201712)。
文摘Understanding the spatial distribution of the crop yield gap(YG)is essential for improving crop yields.Recent studies have typically focused on the site scale,which may lead to considerable uncertainties when scaled to the regional scale.To mitigate this issue,this study used a process-based and remote sensing driven crop yield model for winter wheat(PRYM-Wheat),which was derived from the boreal ecosystem productivity simulator(BEPS),to simulate the YG of winter wheat in the North China Plain from 2015 to 2019.Yield validation based on statistical yield data revealed good performance of the PRYM-Wheat Model in simulating winter wheat actual yield(Ya).The distribution of Ya across the North China Plain showed great heterogeneity,decreasing from southeast to northwest.The remote sensing-estimated results show that the average YG of the study area was 6400.6 kg ha^(–1).The YG of Jiangsu Province was the largest,at7307.4 kg ha^(–1),while the YG of Anhui Province was the smallest,at 5842.1 kg ha^(–1).An analysis of the responses of YG to environmental factors showed no obvious correlation between YG and precipitation,but there was a weak negative correlation between YG and accumulated temperature.In addition,the YG was positively correlated with elevation.In general,studying the specific features of the YG can provide directions for increasing crop yields in the future.
基金funded by Geological Joint Fund of the National Natural Science Foundation of China (U2244214)China Geological Survey Program (DD20190336, DD20221752, DD20230078)+1 种基金Chinese Academy of Geological Sciences Basic Research Fund Program (SK202118, SK202216)Hebei Provincial Innovation Capacity Enhancement Program for High-level Talent Team Building (225A4204D)。
文摘The North China Plain is one of the main grain producing areas in China. However, overexploitation has long been unsustainable since the water supply is mainly from groundwater. Since 2014,the South-to-North Water Diversion Project's central route has been charted to the integrated management of water supply and over-exploitation, which has alleviated the problem to a certain extent. Although the Ministry of Water Resources has made many efforts on groundwater recharge since 2018 most of which have been successful, the recharge has not yet been sufficiently focused on the repair of shallow groundwater depression zones. It still needs further optimization. This paper discusses this particular issue,proposes optimized recharge plan and provides the following recommendations:(1) Seven priority target areas are selected for groundwater recharge in alluvial and proluvial fans in the piedmont plain, and the storage capacity is estimated to be 181.00×10~8 m~3;(2) A recharge of 31.18×10~8 m~3/a is required by 2035 to achieve the repair target;(3) It is proposed to increase the recharge of Hutuo River, Dasha River and Tanghe River to 19.00×10~8 m~3/a and to rehabilitate Gaoliqing-Ningbailong Depression Zone;increase the recharge of Fuyang River, Zhanghe River and Anyang River to 7.05×10~8 m~3/a and rehabilitate Handan Feixiang-Guangping Depression Zone;increase the recharge of Luanhe River by 0.56×10~8 m~3/a and restore Tanghai Depression Zone and Luanan-Leting Depression Zone;moderately reduce the amount of water recharged to North Canal and Yongding River to prevent excessive rebound of groundwater;(4) Recharge through well is implemented on a pilot basis in areas of severe urban ground subsidence and coastal saltwater intrusion;(5) An early warning mechanism for groundwater quality risks in recharge areas is established to ensure the safety. The numerical groundwater flow model also proves reasonable groundwater level restoration in the depression zones by 2035.
基金supported by the National Natural Science Foundation of China(41977258)the China Geological Survey(DD20190310,DD20221761)the National Key R&D Program of China(2018YFC1504704).
文摘The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed river terraces of its tributary,the Yixun River,provide excellent information for studying neotectonics and climate change.There are seven terraces in the lower reaches of the Yixun River,numbered T7-T1.The optically stimulated luminescence dating results of 23 samples show that terraces T7-T2 formed at 111.36±5.83 ka,78.20±4.45 ka,65.29±4.15 ka,56.44±3.07 ka,40.08±2.66 ka,and 13.14±0.76 ka,respectively.A comparison with the oxygen isotope curves of deep-sea sediments reveals that the sediment formation of each terrace corresponded to cold periods of marine isotope stages MIS 4 and MIS 2 and the relatively cold periods of MIS 5e,MIS 3,and MIS 1.Since the Late Pleistocene,the incision rate of the Yixun River has ranged from 0.371-1.740 mm/a.During the formation of T7-T6,T5-T4,T4-T3,and T3-T2,the incision rate was low.However,in the two stages during which T6-T5 and T2-T1 formed(13.14±0.76 ka to 0.58±0.08 ka and 10.79±0.64 ka to 0.16±0.01 ka),these rates reached 1.554 mm/a and 1.592-1.740 mm/a,respectively.At approximately 30 ka,the activity of the Langying Fault increased,leading to footwall uplift.The river gathered in the north of Langying to form the ancient Erdaowan Lake,which resulted in the drying of the river in the lower reaches of the Yixun River during the last glacial maximum without forming river deposits.In the Early Holocene,headward erosion in the lower reaches of the Yixun River was enhanced,which resulted in the disappearance of the lake,and incised meandering formed due to increased neotectonism.Based on the analyses of river incision and the formation of ancient lakes and incised meandering,it was inferred that there have been three periods of strong tectonism in the river basin since the Late Pleistocene.
基金supported by the open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,Institute of Geology,Chinese Academy of Geological Sciences (Number J1901-16)the project of graduate education and teaching reform in Shanxi Province (Number 2021YJJG147)+3 种基金the teaching reform project"Geographic Modeling,Simulation and Visualization"established by Shanxi Normal University (Number2019JGXM-39)"The Research Start-up Fund of Shanxi Normal University for Dr.Peng Chong in 2016"(Number 0505/02070438)"The Research Start-up Fund of Shanxi Normal University for Dr.Liu Haiyan in 2017"(Number 0505/02070458)"The Research Fund for Outstanding Doctor in 2017"(Number 0503/02010168),established by the Education Department of Shanxi Province for Dr.Liu Haiyan。
文摘We studied an Archean mafic dike in the TransNorth China Orogen of the North China Craton, which has a magmatic age of 2701 ± 83 Ma and is currently the oldest mafic dike in the North China Craton. Such an old dike is extremely rare in the world. The presence of mafic dikes indicates that the North China Craton was in a tensional tectonic environment at 2.7 Ga. Geochemical characteristics reveal that this mafic dike belongs to continental tholeiitic basalt. Results from Hf isotope analysis reveal that the mafic dike originates from a depleted mantle. The plate assembly in the North China landmass was realized during the Archean era(2.7 Ga), and a thick and stable continental crust was formed. Therefore, the first cratonization of the North China Craton was completed before 2.7 Ga. The intrusion of the 2.7-Ga-old mafic dike from the deep lithospheric mantle of the continent indicates that the North China Craton has undergone a period of extensional tectonic activity. This event marks a significant extensional event that occurred after the cratonization of the North China Craton.
基金granted by the National Natural Science Foundation of China(Grant Nos.41872194,41872203)the Regional Geological Survey Project of Huai′an,Hebei-Liangcheng,Inner Mongolia(Grant No.DD20190035)。
文摘We investigated the meta-gabbronorites in Liangcheng and used detailed petrography,geochemistry,zircon geochronological and in-situ Hf isotopic studies to clarify their formation and metamorphic ages,petrogenesis,tectonic setting and provide constraints on the tectonic evolution of Khondalite Belt(KB).The zircon U-Pb dating results show that the meta-gabbronorites crystallized at~1.94 Ga and were metamorphosed at~1.91–1.89 Ga.They can be subdivided into the low-Mg and high-Mg groups.The low-Mg meta-gabbronorites contain relatively lower MgO and higher SiO2 contents than high-Mg meta-gabbronorites.They are enriched in light rare earth elements and large ion lithophile elements,depleted in high field strength elements,and exhibit positive(high-Mg meta-gabbronorites)and negative(low-Mg metagabbronorites)Sr and Eu anomalies.The zircon in-situεHf(t)of meta-gabbronorites is 0.07–4.12,with Hf model ages(TDM)of 2169–2400 Ma.The meta-gabbronorites in Liangcheng originated from the asthenospheric mantle and experienced fractional crystallization of olivine,orthopyroxene,clinopyroxene,and plagioclase.They were contaminated by the crustal rocks(mainly khondalite series)during ascent,especially for low-Mg gabbronorites.The ridge subduction is the most plausible tectonic setting for meta-gabbronorites,indicating the eastern segment of KB was in a ridge subduction setting at~1.94 Ga following an orogenic thickening event during a prolonged orogenic process.
基金The National Natural Science Foundation of China under contract Nos 41576029, 41976221 and 42030410the National Key Research and Development Program of China under contract No. 2019YFA0606702the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology。
文摘Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-normal precipitation during the first boreal spring, but above-normal precipitation during the second year. The difference in spring precipitation over southern China is correlative to the variation in western North Pacific anomalous cyclone(WNPC), which can in turn be attributed to the different sea surface temperature anomaly(SSTA) over the Tropical Pacific. The remote forcing of negative SSTA in the equatorial central and eastern Pacific and the local air-sea interaction in the western North Pacific are the usual causes of WNPC formation and maintenance.SSTA in the first spring is stronger than those in the second spring. As a result, the intensity of WNPC in the first year is stronger, which is more likely to reduce the moisture in southern China by changing the moisture transport, leading to prolonged precipitation deficits over southern China. However, the tropical SSTA signals in the second year are too weak to induce the formation and maintenance of WNPC and the below-normal precipitation over southern China. Thus, the variation in tropical SSTA signals between two consecutive springs during multiyear La Ni?a events leads to obvious differences in the spatial pattern of precipitation anomaly in southern China by causing the different WNPC response.