期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces
1
作者 HE Jing-zong CHEN Shi +2 位作者 MA Zheng-kun LU Yong-gen WU Qi-lin 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期703-714,共12页
A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u... A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology. 展开更多
关键词 Thermal raman mapping Stress distribution Carbon fiber Carbon nanotube Interface
下载PDF
3D Raman mapping as an analytical tool for investigating the coatings of coated drug particles 被引量:1
2
作者 Georgia Koutentaki Pavel Krýsa +3 位作者 Dan Trunov Tomás Pekarek Marketa Pislova Miroslav Soos 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第3期276-286,共11页
The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructiv... The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles.The results showed that the wax existed in two forms on the surface of the paracetamol particles,forming a porous coating layer:i)whole wax particles on the surface of paracetamol and glued together with other wax surface particles,and ii)deformed wax particles spread on the surface.Regardless of the final particle size fraction(between 100 and 800 mm),the coating thickness had high variability,with average thickness of 5.9±4.2 mm.The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations.The dissolution was slower for larger coated particles.Tableting further reduced the dissolution rate,clearly indicating the impact of subsequent formulation processes on the final quality of the product. 展开更多
关键词 raman mapping Dry-coating DISSOLUTION Particle coating thickness POLYMERS
下载PDF
Quantification and spatial distribution of salicylic acid in film tablets using FT-Raman mapping with multivariate curve resolution 被引量:1
3
作者 Haslet Eksi-Kocak Sibel Ilbasmis Tamer +3 位作者 Sebnem Yilmaz Merve Eryilmaz Ismail Hakkl Boyaci Ugur Tamer 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2018年第2期155-162,共8页
In this study, we proposed a rapid and sensitive method for quantification and spatial distribution of salicylic acid in film tablets using FT-Raman spectroscopy with multivariate curve resolution(MCR). For this purpo... In this study, we proposed a rapid and sensitive method for quantification and spatial distribution of salicylic acid in film tablets using FT-Raman spectroscopy with multivariate curve resolution(MCR). For this purpose, the constituents of film tablets were identified by using FT-Raman spectroscopy, and then eight different concentrations of salicylic acid tablets were visualized by Raman mapping. MCR was applied to mapping data to expose the active pharmaceutical ingredients in the presence of other excipients by monitoring distribution maps and combination of FT-Raman mapping with MCR enabled the determination of lower salicylic acid concentrations. In addition, the distribution of major excipient, lactose, was examined in the tablet form. A calibration curve was obtained by plotting the intensity of the Raman signal at 1635 cm^(-1) versus the concentration of salicylic acid and the correlation was found to be linear within the range of 0.5%–3.9% with a correlation coefficient of 0.99. The limit of detection for the technique was determined 0.35%. The ability of the technique to quantify salicylic acid in tablet test samples was also investigated. 展开更多
关键词 raman mapping Multivariate curve resolution FT-raman spectroscopy Salicylic acid
下载PDF
Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements
4
作者 David M. A. Mackenzie Jonas D. Buron +12 位作者 Patrick R. Whelan José M. Carida Martin Bjergfelt Bironq Luo Abhay Shivayogimath Anne L. Smitshuysen Joachim D. Thomsen Timothy J. Booth Lene Gammelgaard Johanna Zultak Bjarke S. Jessen Peter Boggild Dirch H. Petersen 《Nano Research》 SCIE EI CAS CSCD 2017年第10期3596-3605,共10页
With the increasing availability of large-area graphene, the ability to rapidly and accurately assess the quality of the electrical properties has become critically important. For practical applications, spatial varia... With the increasing availability of large-area graphene, the ability to rapidly and accurately assess the quality of the electrical properties has become critically important. For practical applications, spatial variability in carrier density and carrier mobility must be controlled and minimized. We present a simple framework for assessing the quality and homogeneity of large-area graphene devices. The field effect in both exfoliated graphene devices encapsulated in hexagonal boron nitride and chemical vapor-deposited (CVD) devices was measured in dual current-voltage configurations and used to derive a single, gate-dependent effective shape factor, t, for each device, β is a sensitive indicator of spatial homogeneity that can be obtained from samples of arbitrary shape. All 50 devices investigated in this study show a variation (up to tenfold) in β as a function of the gate bias. Finite element simulations suggest that spatial doping inhomogeneity, rather than mobility inhomogeneity, is the primary cause of the gate dependence of β, and that measurable variations of β can be caused by doping variations as small as 10^10 cm^-2. Our results suggest that local variations in the position of the Dirac point alter the current flow and thus the effective sample shape as a function of the gate bias. We also found that such variations lead to systematic errors in carrier mobility calculations, which can be revealed by inspecting the corresponding β factor. 展开更多
关键词 chemical vapor-deposited (CVD) graphene doping inhomogeneity electrical measurements van der Pauw hBN-encapsulated graphene finite element simulations raman mapping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部