We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisab...We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisabilities provide much information concerning the electronic structure of the non-resonant Raman excited virtual state. At the initial moment by the 514.5 nm excitation, the tendency of the excited electrons (mapped out by the bond polarisabilities) is to spread to the molecular periphery, and the electronic structure of the Raman virtual state is close to the pseudoquinonoidic state. When the final stage of relaxation is approached, the bond polarisabilities of those peripheral bonds relax faster than those closer to the molecular core, the phenyl ring. The molecule is in the benzenoidic form as demonstrated by the bond polarisabilities after relaxation.展开更多
An algorithm has been introduced to calculate molecular bond polarizabilities of thiourea, which supply essential electronic information about the nonresonant Raman excited virtual states. The main dynamical behaviour...An algorithm has been introduced to calculate molecular bond polarizabilities of thiourea, which supply essential electronic information about the nonresonant Raman excited virtual states. The main dynamical behaviour of the excited virtual states of thiourea is that the Raman excited electrons tend to flow to the N-H bonds and C-N bonds from the S-C bonds because of the electronic repulsion effect. The difference in Raman excited electron relaxation time of thiourea under 514.5-nm and 325-nm excitations has been observed, which quantitatively shows that the Raman scattering process is dependent on the wavelength of the pumping laser. Finally, the distribution of the electrons at the final stage of relaxation is given out through the comparison between the bond electronic densities of the ground states and the bond polarizabilities after deexcitation.展开更多
基金Project supported by the Natural Science Foundation of Beijing,China (Grant No. 2082006)the National Natural Science Foundation of China (Grant No. 20773073)+1 种基金the Key Grant Project of Chinese Ministry of Education (Grant No. 306020)the Special Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20060003050)
文摘We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisabilities provide much information concerning the electronic structure of the non-resonant Raman excited virtual state. At the initial moment by the 514.5 nm excitation, the tendency of the excited electrons (mapped out by the bond polarisabilities) is to spread to the molecular periphery, and the electronic structure of the Raman virtual state is close to the pseudoquinonoidic state. When the final stage of relaxation is approached, the bond polarisabilities of those peripheral bonds relax faster than those closer to the molecular core, the phenyl ring. The molecule is in the benzenoidic form as demonstrated by the bond polarisabilities after relaxation.
基金supported by the National Science and Technology Major Project (Grant No. ZX06901)
文摘An algorithm has been introduced to calculate molecular bond polarizabilities of thiourea, which supply essential electronic information about the nonresonant Raman excited virtual states. The main dynamical behaviour of the excited virtual states of thiourea is that the Raman excited electrons tend to flow to the N-H bonds and C-N bonds from the S-C bonds because of the electronic repulsion effect. The difference in Raman excited electron relaxation time of thiourea under 514.5-nm and 325-nm excitations has been observed, which quantitatively shows that the Raman scattering process is dependent on the wavelength of the pumping laser. Finally, the distribution of the electrons at the final stage of relaxation is given out through the comparison between the bond electronic densities of the ground states and the bond polarizabilities after deexcitation.