Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D...Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D confined adsorbates on the properties of 2D materials is rarely explored. Herein, we combined atomic force microscopy(AFM), Kelvin probe force microscopy(KPFM) and Raman spectroscopy especially the ultralow frequency(ULF) Raman spectroscopy to explore the influence of 2D confined organic adlayer thickness on the ULF breathing modes of few-layer MoS2 and WSe2nanosheets. As the thickness of organic adlayers increased, red shift, coexistence of blue and red shifts as well as blue shift of ULF breathing mode was observed. KPFM measurement confirmed the enhanced n-doping and p-doping behaviors of organic adlayers as their thickness increased,respectively. Our results will provide new insights into the interaction between 2D confined adsorbates and bottom surface of 2D nanosheets, which could be useful for modulating properties of 2D materials.展开更多
In this work, SF6 as a Raman-active medium is investigated to generate a multispectral Raman laser by the combination of cascade stimulated Raman scattering(SRS) and four wave mixing. The Raman frequency comb from the...In this work, SF6 as a Raman-active medium is investigated to generate a multispectral Raman laser by the combination of cascade stimulated Raman scattering(SRS) and four wave mixing. The Raman frequency comb from the 10 th-order anti-Stokes to the 9 th-order Stokes was generated, and its spectral range covered377–846 nm. The photon conversion efficiency of 16.4% for the first Stokes was achieved, and the Raman gain coefficient at 1.5 MPa of SF6 under the 532 nm pump laser was calculated to be 0.83 cm/GW by the SRS threshold comparison with H2. Using helium as the carrier gas, the thermal effect of the SF6 Raman laser was improved dramatically under a repetition rate of 10 Hz.展开更多
基金supported by the National Natural Science Foundation of China (21571101 and 51322202)the Natural Science Foundation of Jiangsu Province in China (BK20161543 and BK20130927)+1 种基金the Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars (51528201)Natural Science Foundation of Jiangsu Higher Education Institutions of China (15KJB430016)
文摘Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D confined adsorbates on the properties of 2D materials is rarely explored. Herein, we combined atomic force microscopy(AFM), Kelvin probe force microscopy(KPFM) and Raman spectroscopy especially the ultralow frequency(ULF) Raman spectroscopy to explore the influence of 2D confined organic adlayer thickness on the ULF breathing modes of few-layer MoS2 and WSe2nanosheets. As the thickness of organic adlayers increased, red shift, coexistence of blue and red shifts as well as blue shift of ULF breathing mode was observed. KPFM measurement confirmed the enhanced n-doping and p-doping behaviors of organic adlayers as their thickness increased,respectively. Our results will provide new insights into the interaction between 2D confined adsorbates and bottom surface of 2D nanosheets, which could be useful for modulating properties of 2D materials.
基金the National Natural Science Foundation of China(NSFC)(Nos.11475177 and 61505210)the Key Laboratory Innovation Foundation(No.KLCL-2018-N11).
文摘In this work, SF6 as a Raman-active medium is investigated to generate a multispectral Raman laser by the combination of cascade stimulated Raman scattering(SRS) and four wave mixing. The Raman frequency comb from the 10 th-order anti-Stokes to the 9 th-order Stokes was generated, and its spectral range covered377–846 nm. The photon conversion efficiency of 16.4% for the first Stokes was achieved, and the Raman gain coefficient at 1.5 MPa of SF6 under the 532 nm pump laser was calculated to be 0.83 cm/GW by the SRS threshold comparison with H2. Using helium as the carrier gas, the thermal effect of the SF6 Raman laser was improved dramatically under a repetition rate of 10 Hz.