The incubation layers in microcrystalline silicon films (μc-Si:H) are studied in detail. The incubation layers in μc- Si:H films are investigated by biracial Raman spectra, and the results indicate that either d...The incubation layers in microcrystalline silicon films (μc-Si:H) are studied in detail. The incubation layers in μc- Si:H films are investigated by biracial Raman spectra, and the results indicate that either decreasing silane concentration (SC) or increasing plasma power can reduce the thickness of incubation layer. The analysis of the in-situ diagnosis by plasma optical emission spectrum (OES) shows that the emission intensities of the SiH*(412 nm) and Hα (656 nm) lines are time-dependent, thus SiH*/Hα ratio is of temporal evolution. The variation of SiH*/Hα ratio can indicate the variation in relative concentration of precursor and atomic hydrogen in the plasma. And the atomic hydrogen plays a crucial role in the formation of μc-Si:H; thus, with the plasma excited, the temporal-evolution SiH*/Hα ratio has a great influence on the formation of an incubation layer in the initial growth stage. The fact that decreasing the SC or increasing the plasma power can decrease the SIH*/Hα ratio is used to explain why the thickness of incubation layer can reduce with decreasing the SC or increasing the plasma power.展开更多
We characterize the structures of Ge1-xSnx films with x up to 0.14 grown on Ge (001) by molecular-beam epitaxy at low temperature. The results show that Ge1-xSnx films are fully strained even at high Sn composition....We characterize the structures of Ge1-xSnx films with x up to 0.14 grown on Ge (001) by molecular-beam epitaxy at low temperature. The results show that Ge1-xSnx films are fully strained even at high Sn composition. The in-plane lattice parameters remain exactly the same as that of the substrate. Depth sensitivity analysis of the lattice parameters indicates that the strains of the epitaxial films are all in homogeneity. The films are fully strained. Poisson ratios, the force constants for the bonds between Ge and Sn are estimated and discussed in the present paper. Raman results show Ge-Ge, Ge-Sn, Sn-Sn vibrational modes. The Sn-Sn bond aggregation may respond to the high quality of our films. The fully strained epitaxy films with high content of Sn may be useful in designing the high quality GeSn films.展开更多
Novel small Raman gain measurement method for installed fiber optic cables using a modulated pump light is proposed. We have demonstrated accurate Raman gain measurement in small Raman gain less than 1dB and we also m...Novel small Raman gain measurement method for installed fiber optic cables using a modulated pump light is proposed. We have demonstrated accurate Raman gain measurement in small Raman gain less than 1dB and we also measured Raman gain for the installed fiber optic cable by using average pumping power of about only 25mW.展开更多
Polar promotors have been proven effective in catalyzing the polysulfide(PS)reduction reaction(PSRR)process in lithium-sulfur(Li-S)batteries.However,the promotor surface tends to be poisoned due to the accumulation of...Polar promotors have been proven effective in catalyzing the polysulfide(PS)reduction reaction(PSRR)process in lithium-sulfur(Li-S)batteries.However,the promotor surface tends to be poisoned due to the accumulation of insoluble discharging products of lithium disulfide(Li_(2)S_(2))and lithium sulfide(Li_(2)S)during Li-S battery operation.Herein,we investigate the detailed PSRR mechanism on the surface of manganese sulfides(MnS)as a representative promoter by performing in-situ Raman mapping measurements.The catalytic ability of MnS enables thorough electrochemical reduction of PSs to Li_(2)S_(2) and Li_(2)S on the MnS surface.The generated Li_(2)S_(2) and Li_(2)S then adsorb the dissolved PSs via chemical reactions among sulfur species during the subsequent PSRR process.This phenomenon mitigates promotor poisoning and continuously improves the reversible capacity.Consequently,the assembled Li-S cell demonstrates excellent electrochemical performance after introducing a conductive interlayer containing a thin piece of carbon nanotube film and MnS promotors.展开更多
To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic ef...To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.展开更多
We report the growth of high quality Fe excess and Co doped,FeTxSe single crystals in nominal ratio via slow cooling method of high temperature solution growth technique and,their structural and physical properties th...We report the growth of high quality Fe excess and Co doped,FeTxSe single crystals in nominal ratio via slow cooling method of high temperature solution growth technique and,their structural and physical properties through the X‐ray diffraction,Raman spectroscopy,magnetic and transports measurements.Selective area electron diffraction(SAED)patterns and X‐ray diffraction of cleavage piece confirm the growth of single crystals in(h0l)orientations.Observations of phonon vibration modes(A_(1g) and B_(1g))in Raman spectroscopy measurements mark the qualitative analysis of these single crystals.Low temperature magnetic and electrical transport studies manifest the superconducting nature of both single crystals.展开更多
文摘The incubation layers in microcrystalline silicon films (μc-Si:H) are studied in detail. The incubation layers in μc- Si:H films are investigated by biracial Raman spectra, and the results indicate that either decreasing silane concentration (SC) or increasing plasma power can reduce the thickness of incubation layer. The analysis of the in-situ diagnosis by plasma optical emission spectrum (OES) shows that the emission intensities of the SiH*(412 nm) and Hα (656 nm) lines are time-dependent, thus SiH*/Hα ratio is of temporal evolution. The variation of SiH*/Hα ratio can indicate the variation in relative concentration of precursor and atomic hydrogen in the plasma. And the atomic hydrogen plays a crucial role in the formation of μc-Si:H; thus, with the plasma excited, the temporal-evolution SiH*/Hα ratio has a great influence on the formation of an incubation layer in the initial growth stage. The fact that decreasing the SC or increasing the plasma power can decrease the SIH*/Hα ratio is used to explain why the thickness of incubation layer can reduce with decreasing the SC or increasing the plasma power.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274153,11204124,and 51202108)the National Key Projects for Basic Research of China(Grant No.2010CB923404)
文摘We characterize the structures of Ge1-xSnx films with x up to 0.14 grown on Ge (001) by molecular-beam epitaxy at low temperature. The results show that Ge1-xSnx films are fully strained even at high Sn composition. The in-plane lattice parameters remain exactly the same as that of the substrate. Depth sensitivity analysis of the lattice parameters indicates that the strains of the epitaxial films are all in homogeneity. The films are fully strained. Poisson ratios, the force constants for the bonds between Ge and Sn are estimated and discussed in the present paper. Raman results show Ge-Ge, Ge-Sn, Sn-Sn vibrational modes. The Sn-Sn bond aggregation may respond to the high quality of our films. The fully strained epitaxy films with high content of Sn may be useful in designing the high quality GeSn films.
文摘Novel small Raman gain measurement method for installed fiber optic cables using a modulated pump light is proposed. We have demonstrated accurate Raman gain measurement in small Raman gain less than 1dB and we also measured Raman gain for the installed fiber optic cable by using average pumping power of about only 25mW.
基金supported by the National Basic Research Program of China(2019YFA0705702)the National Natural Science Foundation of China(51872158).H.T.Liu acknowledges funding from the National Natural Science Foundation of China(No.11734013,11874089).
文摘Polar promotors have been proven effective in catalyzing the polysulfide(PS)reduction reaction(PSRR)process in lithium-sulfur(Li-S)batteries.However,the promotor surface tends to be poisoned due to the accumulation of insoluble discharging products of lithium disulfide(Li_(2)S_(2))and lithium sulfide(Li_(2)S)during Li-S battery operation.Herein,we investigate the detailed PSRR mechanism on the surface of manganese sulfides(MnS)as a representative promoter by performing in-situ Raman mapping measurements.The catalytic ability of MnS enables thorough electrochemical reduction of PSs to Li_(2)S_(2) and Li_(2)S on the MnS surface.The generated Li_(2)S_(2) and Li_(2)S then adsorb the dissolved PSs via chemical reactions among sulfur species during the subsequent PSRR process.This phenomenon mitigates promotor poisoning and continuously improves the reversible capacity.Consequently,the assembled Li-S cell demonstrates excellent electrochemical performance after introducing a conductive interlayer containing a thin piece of carbon nanotube film and MnS promotors.
基金supported by National Natural Science Foundation of China (22033009, 22121002, 22238011)。
文摘To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.
基金support through the project No.F.30‐303/2016(BSR).
文摘We report the growth of high quality Fe excess and Co doped,FeTxSe single crystals in nominal ratio via slow cooling method of high temperature solution growth technique and,their structural and physical properties through the X‐ray diffraction,Raman spectroscopy,magnetic and transports measurements.Selective area electron diffraction(SAED)patterns and X‐ray diffraction of cleavage piece confirm the growth of single crystals in(h0l)orientations.Observations of phonon vibration modes(A_(1g) and B_(1g))in Raman spectroscopy measurements mark the qualitative analysis of these single crystals.Low temperature magnetic and electrical transport studies manifest the superconducting nature of both single crystals.