期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lidar Methods for Observing Mineral Dust 被引量:1
1
作者 Nobuo SUGIMOTO HUANG Zhongwei 黄忠伟 《Journal of Meteorological Research》 SCIE 2014年第2期173-184,共12页
Lidar methods for observing mineral dust aerosols are reviewed.These methods include Mie scattering lidars,polarization lidars,Raman scattering lidars,high-spectral-resolution lidars,and fluorescence lidars.Some of th... Lidar methods for observing mineral dust aerosols are reviewed.These methods include Mie scattering lidars,polarization lidars,Raman scattering lidars,high-spectral-resolution lidars,and fluorescence lidars.Some of the lidar systems developed by the authors and the results of the observations and applications are introduced.The largest advantage of the lidar methods is that they can observe vertical distribution of aerosols continuously with high temporal and spatial resolutions.Networks of ground-based lidars provide useful data for understanding the distribution and movement of mineral dust and other aerosols.The lidar network data are actually used for validation and assimilation of dust transport models,which can evaluate emission,transport,and deposition of mineral dust.The lidar methods are also useful for measuring the optical characteristics of aerosols that are essential to assess the radiative effects of aerosols.Evolution of the lidar data analysis methods for aerosol characterization is also reviewed.Observations from space and ground-based networks are two important approaches with the lidar methods in the studies of the effects of mineral dust and other aerosols on climate and the environment.Directions of the researches with lidar methods in the near future are discussed. 展开更多
关键词 lidar mineral dust Mie scattering lidar raman lidar high-spectral-resolution lidar fluorescence lidar
原文传递
Atmospheric temperature dependence of the aerosol backscattering coefficient 被引量:1
2
作者 Binglong Chen Siying Chen +3 位作者 Yinchao Zhang He Chen Pan Guo Hao Chen 《Particuology》 SCIE EI CAS CSCD 2016年第5期72-76,共5页
In extracting vertical profiles of aerosol backscattering coefficient from lidar signals, the effects of atmo- spheric temperature are usually ignored, In this study, these effects are analyzed using a rotational Rama... In extracting vertical profiles of aerosol backscattering coefficient from lidar signals, the effects of atmo- spheric temperature are usually ignored, In this study, these effects are analyzed using a rotational Raman-Mie lidar system, which is capable of simultaneously measuring atmospheric temperature and vertical profiles of aerosols, A method is presented to correct the aerosol backscattering coefficient using atmospheric temperature profiles, obtained from Raman scattering signals. The differences in the extracted aerosol backscattering coefficient with and without considering temperature effects are fur- ther discussed. The backscattering coefficients for scattering off clouds are shown to be more sensitive to temperature than that of aerosols and atmosphere molecules; the aerosol backscattering coefficient is more sensitive to temperature in summer due to higher atmospheric temperatures, 展开更多
关键词 lidar Atmospheric temperature Aerosol raman scattering Backscattering coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部