Nitrogen hydrate samples were synthesized using liquid nitrogen and powder ice at 16 MPa and 253 K. Confocal laser Raman spectroscopy was used to investigate the characteristics of nitrogen clathrate hydrates. The res...Nitrogen hydrate samples were synthesized using liquid nitrogen and powder ice at 16 MPa and 253 K. Confocal laser Raman spectroscopy was used to investigate the characteristics of nitrogen clathrate hydrates. The results show that the Raman peaks of N-N and O-H stretching vibration in nitrogen hydrates are observed at 2322.4 and 3092.1 cm^-1, respectively, which are very similar to those in natural air clathrate hydrates. For comparison, we measured the Raman peaks of N-N stretching vibration both in liquid nitrogen and nitrogen molecules saturated water, which appear at 2326.6 and 2325.0 cm^-1, respectively. The Raman spectroscopic observations on the dissociation process suggest that nitrogen molecules occupy both the large and small cages in nitrogen clathrate hydrates. However, only one Raman peak is observed for N N stretching vibration because the difference of the environment of nitrogen molecules between large and small cages is too small to be differentiated by Raman spectroscopy.展开更多
In this paper,Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition(LPMOCVD) are investigated.We compare the crystal qualities and study the ...In this paper,Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition(LPMOCVD) are investigated.We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K.The temperature-dependences of GaN phonon modes(A1(TO),E2(high),and E1(TO)) and the linewidths of E2(high) phonon peak are studied.The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range,and the relationship can be fitted to the pseudo-Voigt function.From analytic results we find a critical temperature existing in the relationship,which can characterize the anharmonic effects of a-plane GaN in different temperature ranges.In the range of higher temperature,the relationship exhibits an approximately linear behavior,which is consistent with the analyzed results theoretically.展开更多
Raman soliton self-frequency shifted to mid-infrared band(λ 〉 2 μm) has been achieved in an air-silica microstructure fiber(MF). The MF used in our experiment has an elliptical core with diameters of 1.08 and 2...Raman soliton self-frequency shifted to mid-infrared band(λ 〉 2 μm) has been achieved in an air-silica microstructure fiber(MF). The MF used in our experiment has an elliptical core with diameters of 1.08 and 2.48 μm for fast and slow axis. Numerical simulation shows that each fundamental orthogonal polarization mode has two wide-spaced λZDW and theλZDW pairs located at 701/2110 nm and 755/2498 nm along the fast and slow axis, respectively. Using 810-nm Ti:sapphire femtosecond laser as pump, when the output power varies from 0.3 to 0.5 W, the furthest red-shift Raman solitons in both fast and slow axis shift from near-infrared band to mid-infrared band, reaching as far as 2030 and 2261 nm. Also, midinfrared Raman solitons can always be generated for pump wavelength longer than 790 nm if output pump power reaches0.5 W. Specifically, with pump power at 0.5 W, the mid-infrared soliton in slow axis shifts from 2001 to 2261 nm when the pump changes from 790 nm to 810 nm. This means only a 20 nm change of pump results in 260 nm tunability of a mid-infrared soliton.展开更多
Due to its ubiquitous occurrence in igneous,metamorphic,and sedimentary rocks and its wide application in geochronology and geochemistry,zircon has become the most widely used accessory mineral in the geological commu...Due to its ubiquitous occurrence in igneous,metamorphic,and sedimentary rocks and its wide application in geochronology and geochemistry,zircon has become the most widely used accessory mineral in the geological community.Nevertheless,the decay of U and Th causes radiation damage to the zircon structure,resulting in various degrees of metamictization,which can affect the accuracy of U–Pb dates and Hf and O isotope results.If the degree of zircon radiation damage can be quantified,the influence on geochemical analyses can be evaluated,and the results can be corrected more precisely.In this paper,synthetic and natural zircon crystals with different crystallization ages were selected for Raman spectroscopy analysis,cathodoluminescence imaging,and determination of the U and Th concentrations.The results show that Raman FWHM(full width at half bandmaximum)and Raman shift correlate with alpha dose(Da)ofzirconsfollowingtheseequations,FWHM=44.36(±2.32)×[1-exp(-2.74×Da)]-+1.7(±0.19),Raman Shift=-6.53×Da+1007.69.Analysis of synthetic zircon crystals shows that doped REEs(rare earth elements and P)can also lead to an increase in the FWHM.However,this effect can be ignored for natural zircon samples with REE contents at a normal level of hundreds to a few thousand ppm.The FWHM and Raman shift can be used as proxies to measure the degree of zircon radiation damage.Using the updated equations to calculate the latest age when zircon began to accumulate radiation damage,a more accurate and more meaningful“radiation damage age”can be obtained.展开更多
The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the m...The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.展开更多
Surface-enhanced Raman spectroscopy(SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS ...Surface-enhanced Raman spectroscopy(SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS technique has not been established as a routine analytic method most likely due to the low reproducibility of the SERS signal. This review considers the influence factors to produce the poor reproducibility during the SERS measurement. This review starts with the discussion of calculation of surface-enhanced Raman intensity in order to explain the reason why it is so difficult to achieve a high reproducibility of SERS measurement from the origin of enhancement mechanism. Then we focus on the fabrication of SERS substrates generally including two types:① single particles and ② arrays on substrate that are directly used to detect molecules or other components.In addition, we discuss the molecule factors and optical system for the reproducibility for sample-to-sample or spot-to-spot on a substrate. In the final part of this review, some effects resulting in the irreproducibility of Raman bands' position from recent literatures are discussed.展开更多
Photoluminescence (PL) of transition metal dichalcogenides (TMDs) can be engineered by controlling the density of defects, which provide active sites for electron-hole recombination, either radiatively or non-radi...Photoluminescence (PL) of transition metal dichalcogenides (TMDs) can be engineered by controlling the density of defects, which provide active sites for electron-hole recombination, either radiatively or non-radiatively. However, the implantation of defects by external stimulation, such as uniaxial tension and irradiation, tends to introduce local damages or structural non-homogeneity, which greatly degrades their luminescence properties and impede their applicability in constructing optoelectronic devices. In this paper, we present a strategy to introduce a controllable level of defects into the MoS2 monolayers by adding a hydrogen flow during the chemical vapor deposition, without sacrificing their luminescence characteristics. The density of the defect is controlled directly by the concentration of hydrogen. For an appropriate hydrogen flux, the monolayer MoS2 sheets have three times stronger PL emission at the excitonic transitions, compared with those samples with nearly perfect crystalline structure. The defect-bounded exciton transitions at lower energies arising in the defective samples and are maximized when the total PL is the strongest. However, the B exciton, exhibits a monotonic decline as the defect density increases. The Raman spectra of the defective MoS2 reveal a redshift (blueshift) of the in-plane (out-of-plane) vibration modes as the hydrogen flux increases. All the evidence indicates that the generated defects are in the form of sulfur vacancies. This study renders the high-throughput synthesis of defective MoS2 possible for catalysis or light emitting applications.展开更多
文摘Nitrogen hydrate samples were synthesized using liquid nitrogen and powder ice at 16 MPa and 253 K. Confocal laser Raman spectroscopy was used to investigate the characteristics of nitrogen clathrate hydrates. The results show that the Raman peaks of N-N and O-H stretching vibration in nitrogen hydrates are observed at 2322.4 and 3092.1 cm^-1, respectively, which are very similar to those in natural air clathrate hydrates. For comparison, we measured the Raman peaks of N-N stretching vibration both in liquid nitrogen and nitrogen molecules saturated water, which appear at 2326.6 and 2325.0 cm^-1, respectively. The Raman spectroscopic observations on the dissociation process suggest that nitrogen molecules occupy both the large and small cages in nitrogen clathrate hydrates. However, only one Raman peak is observed for N N stretching vibration because the difference of the environment of nitrogen molecules between large and small cages is too small to be differentiated by Raman spectroscopy.
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No. K50511250002)the National Key Science & Technology Special Project,China (Grant No. 2008ZX01002-002)+1 种基金the Major Program and State Key Program of the National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033)the Science Fund for Youths Scholars (Grant Nos. 61204006)
文摘In this paper,Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition(LPMOCVD) are investigated.We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K.The temperature-dependences of GaN phonon modes(A1(TO),E2(high),and E1(TO)) and the linewidths of E2(high) phonon peak are studied.The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range,and the relationship can be fitted to the pseudo-Voigt function.From analytic results we find a critical temperature existing in the relationship,which can characterize the anharmonic effects of a-plane GaN in different temperature ranges.In the range of higher temperature,the relationship exhibits an approximately linear behavior,which is consistent with the analyzed results theoretically.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61405172,61405173,and 61275093)the Natural Science Foundation of Hebei Province,China(Grant No.F2014203194)+1 种基金the College Science Research Program of Hebei Province,China(Grant No.QN20131044)the Program of Independent Research for the Young Teachers of Yanshan University of China(Grant No.13LGB017)
文摘Raman soliton self-frequency shifted to mid-infrared band(λ 〉 2 μm) has been achieved in an air-silica microstructure fiber(MF). The MF used in our experiment has an elliptical core with diameters of 1.08 and 2.48 μm for fast and slow axis. Numerical simulation shows that each fundamental orthogonal polarization mode has two wide-spaced λZDW and theλZDW pairs located at 701/2110 nm and 755/2498 nm along the fast and slow axis, respectively. Using 810-nm Ti:sapphire femtosecond laser as pump, when the output power varies from 0.3 to 0.5 W, the furthest red-shift Raman solitons in both fast and slow axis shift from near-infrared band to mid-infrared band, reaching as far as 2030 and 2261 nm. Also, midinfrared Raman solitons can always be generated for pump wavelength longer than 790 nm if output pump power reaches0.5 W. Specifically, with pump power at 0.5 W, the mid-infrared soliton in slow axis shifts from 2001 to 2261 nm when the pump changes from 790 nm to 810 nm. This means only a 20 nm change of pump results in 260 nm tunability of a mid-infrared soliton.
基金supported by funds from the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB 41000000)the National Natural Science Foundation of China(41973002,41772187)+1 种基金the Fundamental Research Funds for the Central UniversitiesNatural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grant to J.M Hanchar(RGPIN/004649-2015)。
文摘Due to its ubiquitous occurrence in igneous,metamorphic,and sedimentary rocks and its wide application in geochronology and geochemistry,zircon has become the most widely used accessory mineral in the geological community.Nevertheless,the decay of U and Th causes radiation damage to the zircon structure,resulting in various degrees of metamictization,which can affect the accuracy of U–Pb dates and Hf and O isotope results.If the degree of zircon radiation damage can be quantified,the influence on geochemical analyses can be evaluated,and the results can be corrected more precisely.In this paper,synthetic and natural zircon crystals with different crystallization ages were selected for Raman spectroscopy analysis,cathodoluminescence imaging,and determination of the U and Th concentrations.The results show that Raman FWHM(full width at half bandmaximum)and Raman shift correlate with alpha dose(Da)ofzirconsfollowingtheseequations,FWHM=44.36(±2.32)×[1-exp(-2.74×Da)]-+1.7(±0.19),Raman Shift=-6.53×Da+1007.69.Analysis of synthetic zircon crystals shows that doped REEs(rare earth elements and P)can also lead to an increase in the FWHM.However,this effect can be ignored for natural zircon samples with REE contents at a normal level of hundreds to a few thousand ppm.The FWHM and Raman shift can be used as proxies to measure the degree of zircon radiation damage.Using the updated equations to calculate the latest age when zircon began to accumulate radiation damage,a more accurate and more meaningful“radiation damage age”can be obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.62105272 and 62305304)the Natural Science Foundation of Fujian Province,China(Grant Nos.2022J06016 and 2021J05016)+2 种基金the National Key Research and Development Program of China(Grant No.2021ZD0109904)the Key Research Project of Zhejiang Laboratory(Grant No.2022PH0AC03)the Fundamental Research Funds for the Central Universities(Grant No.20720220109).
文摘The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.
基金the National Natural Science Foundation of China(No.21375087)the Natural Science Foundation of Shanghai(No.13ZR1422100)
文摘Surface-enhanced Raman spectroscopy(SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS technique has not been established as a routine analytic method most likely due to the low reproducibility of the SERS signal. This review considers the influence factors to produce the poor reproducibility during the SERS measurement. This review starts with the discussion of calculation of surface-enhanced Raman intensity in order to explain the reason why it is so difficult to achieve a high reproducibility of SERS measurement from the origin of enhancement mechanism. Then we focus on the fabrication of SERS substrates generally including two types:① single particles and ② arrays on substrate that are directly used to detect molecules or other components.In addition, we discuss the molecule factors and optical system for the reproducibility for sample-to-sample or spot-to-spot on a substrate. In the final part of this review, some effects resulting in the irreproducibility of Raman bands' position from recent literatures are discussed.
文摘Photoluminescence (PL) of transition metal dichalcogenides (TMDs) can be engineered by controlling the density of defects, which provide active sites for electron-hole recombination, either radiatively or non-radiatively. However, the implantation of defects by external stimulation, such as uniaxial tension and irradiation, tends to introduce local damages or structural non-homogeneity, which greatly degrades their luminescence properties and impede their applicability in constructing optoelectronic devices. In this paper, we present a strategy to introduce a controllable level of defects into the MoS2 monolayers by adding a hydrogen flow during the chemical vapor deposition, without sacrificing their luminescence characteristics. The density of the defect is controlled directly by the concentration of hydrogen. For an appropriate hydrogen flux, the monolayer MoS2 sheets have three times stronger PL emission at the excitonic transitions, compared with those samples with nearly perfect crystalline structure. The defect-bounded exciton transitions at lower energies arising in the defective samples and are maximized when the total PL is the strongest. However, the B exciton, exhibits a monotonic decline as the defect density increases. The Raman spectra of the defective MoS2 reveal a redshift (blueshift) of the in-plane (out-of-plane) vibration modes as the hydrogen flux increases. All the evidence indicates that the generated defects are in the form of sulfur vacancies. This study renders the high-throughput synthesis of defective MoS2 possible for catalysis or light emitting applications.