Raman soliton self-frequency shifted to mid-infrared band(λ 〉 2 μm) has been achieved in an air-silica microstructure fiber(MF). The MF used in our experiment has an elliptical core with diameters of 1.08 and 2...Raman soliton self-frequency shifted to mid-infrared band(λ 〉 2 μm) has been achieved in an air-silica microstructure fiber(MF). The MF used in our experiment has an elliptical core with diameters of 1.08 and 2.48 μm for fast and slow axis. Numerical simulation shows that each fundamental orthogonal polarization mode has two wide-spaced λZDW and theλZDW pairs located at 701/2110 nm and 755/2498 nm along the fast and slow axis, respectively. Using 810-nm Ti:sapphire femtosecond laser as pump, when the output power varies from 0.3 to 0.5 W, the furthest red-shift Raman solitons in both fast and slow axis shift from near-infrared band to mid-infrared band, reaching as far as 2030 and 2261 nm. Also, midinfrared Raman solitons can always be generated for pump wavelength longer than 790 nm if output pump power reaches0.5 W. Specifically, with pump power at 0.5 W, the mid-infrared soliton in slow axis shifts from 2001 to 2261 nm when the pump changes from 790 nm to 810 nm. This means only a 20 nm change of pump results in 260 nm tunability of a mid-infrared soliton.展开更多
The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the m...The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.展开更多
This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be ob...This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be observed by particle simulations. In addition to the inhomogeneity of the plasma density, the acceleration of the solitons also depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between about half and one of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and magnetic fields have half-cycle and one-cycle structure respectively. Analytical estimates for the existence of the solitons and their electromagnetic frequencies qualitatively coincide with our simulation results.展开更多
Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. T...Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. The developed theory considers the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is approximated by a linearly polarized plane electromagnetic wave. The possibility of simultaneous propagation of pulses on both different frequencies (pump and Stokes) and different polarization (simultons) is theoretically shown. It is also shown that the expression for the gain factor g in SRS is consistent with the experimental results for the spectra of ZnS.展开更多
The system of shortened Maxwell’s equations simulating the processes of evolution of the stimulated Raman scattering (SRS) by polaritons in anisotropic dipole-active crystals is obtained. The theory was developed for...The system of shortened Maxwell’s equations simulating the processes of evolution of the stimulated Raman scattering (SRS) by polaritons in anisotropic dipole-active crystals is obtained. The theory was developed for the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is a linearly polarized plane electromagnetic wave. We report the results of the theoretical investigation of the possibility of the existence of a regime of pulse propagation as simultaneous travel of solitary waves in coherent anti-Stokes stimulated Raman scattering by polaritons in anisotropic crystals. The emphasis was made on the existence of both Stokes and anti-Stokes pulses propagating with two stable and perpendicular to the direction of travel polarizations. We showed the theoretical possibility of simultaneous propagation of pulses not only at frequencies of Stokes and anti-Stokes waves but the pump frequency as well. We obtained the expression for the gain factor g. It is also shown that the expression for g is consistent with the experimental results for the spectra of ZnS.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61405172,61405173,and 61275093)the Natural Science Foundation of Hebei Province,China(Grant No.F2014203194)+1 种基金the College Science Research Program of Hebei Province,China(Grant No.QN20131044)the Program of Independent Research for the Young Teachers of Yanshan University of China(Grant No.13LGB017)
文摘Raman soliton self-frequency shifted to mid-infrared band(λ 〉 2 μm) has been achieved in an air-silica microstructure fiber(MF). The MF used in our experiment has an elliptical core with diameters of 1.08 and 2.48 μm for fast and slow axis. Numerical simulation shows that each fundamental orthogonal polarization mode has two wide-spaced λZDW and theλZDW pairs located at 701/2110 nm and 755/2498 nm along the fast and slow axis, respectively. Using 810-nm Ti:sapphire femtosecond laser as pump, when the output power varies from 0.3 to 0.5 W, the furthest red-shift Raman solitons in both fast and slow axis shift from near-infrared band to mid-infrared band, reaching as far as 2030 and 2261 nm. Also, midinfrared Raman solitons can always be generated for pump wavelength longer than 790 nm if output pump power reaches0.5 W. Specifically, with pump power at 0.5 W, the mid-infrared soliton in slow axis shifts from 2001 to 2261 nm when the pump changes from 790 nm to 810 nm. This means only a 20 nm change of pump results in 260 nm tunability of a mid-infrared soliton.
基金supported by the National Natural Science Foundation of China(Grant Nos.62105272 and 62305304)the Natural Science Foundation of Fujian Province,China(Grant Nos.2022J06016 and 2021J05016)+2 种基金the National Key Research and Development Program of China(Grant No.2021ZD0109904)the Key Research Project of Zhejiang Laboratory(Grant No.2022PH0AC03)the Fundamental Research Funds for the Central Universities(Grant No.20720220109).
文摘The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10575015, 10445003, 10335020 and 10375011), the National Key Laboratory of Laser Fusion, China (Grant No 51480010205ZW0901), the Scientific Research Foundation for Returned 0verseas Chinese Scholars, State Education Ministry and the Foundation of China Academy of Engineering Physics (Grant No 20060217).
文摘This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be observed by particle simulations. In addition to the inhomogeneity of the plasma density, the acceleration of the solitons also depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between about half and one of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and magnetic fields have half-cycle and one-cycle structure respectively. Analytical estimates for the existence of the solitons and their electromagnetic frequencies qualitatively coincide with our simulation results.
文摘Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. The developed theory considers the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is approximated by a linearly polarized plane electromagnetic wave. The possibility of simultaneous propagation of pulses on both different frequencies (pump and Stokes) and different polarization (simultons) is theoretically shown. It is also shown that the expression for the gain factor g in SRS is consistent with the experimental results for the spectra of ZnS.
文摘The system of shortened Maxwell’s equations simulating the processes of evolution of the stimulated Raman scattering (SRS) by polaritons in anisotropic dipole-active crystals is obtained. The theory was developed for the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is a linearly polarized plane electromagnetic wave. We report the results of the theoretical investigation of the possibility of the existence of a regime of pulse propagation as simultaneous travel of solitary waves in coherent anti-Stokes stimulated Raman scattering by polaritons in anisotropic crystals. The emphasis was made on the existence of both Stokes and anti-Stokes pulses propagating with two stable and perpendicular to the direction of travel polarizations. We showed the theoretical possibility of simultaneous propagation of pulses not only at frequencies of Stokes and anti-Stokes waves but the pump frequency as well. We obtained the expression for the gain factor g. It is also shown that the expression for g is consistent with the experimental results for the spectra of ZnS.