In the low aspect ratio torus experiment (LATE) device, plasma current is initiated and ramped up to 20 kA solely by microwave power at the electron cyclotron (EC) range of frequency with a ramp of the external ve...In the low aspect ratio torus experiment (LATE) device, plasma current is initiated and ramped up to 20 kA solely by microwave power at the electron cyclotron (EC) range of frequency with a ramp of the external vertical field By for the radial equilibrium of plasma torus at larger currents. Measurements suggest that an energetic electron tail in the energy range of about 200 keV carries the current. The line averaged electron density is higher than the plasma cutoff density, suggesting that tail electrons might be driven by electron Bernstein waves modeconverted from the launched electromagnetic waves.展开更多
Two-dimensional structure of density fluctuations is examined during the current jump phase, indicating a change from the open magnetic fields to the closed ones. During the smooth current ramp-up phase the two-dimens...Two-dimensional structure of density fluctuations is examined during the current jump phase, indicating a change from the open magnetic fields to the closed ones. During the smooth current ramp-up phase the two-dimensional contour of the LiI intensity shows vertically alignment, consistent with the magnetic surfaces. At the inflection point in Ip ramp-up the LiI intensity contour becomes flat in the observation regime and then suddenly a steep gradient and higher intensity regime are formed in the vertical direction. This higher intensity corresponds to a burst of LiI waveform. According to these changes in the contour, it is found that, within ~1 ms around the burst of LiI, a low frequency coherent wave with a long wavelength rapidly grows. The relations with other signals (magnetic flux and microwave stray power) are discussed with respect to the topological change in the magnetic configuration and mode conversion of the incident electromagnetic waves.展开更多
The plasma current ramp-up is an important process for tokamak discharge,which directly affects the quality of the plasma and the system resources such as volt-second consumption and plasma current profile.The China F...The plasma current ramp-up is an important process for tokamak discharge,which directly affects the quality of the plasma and the system resources such as volt-second consumption and plasma current profile.The China Fusion Engineering Test Reactor(CFETR)ramp-up discharge is predicted with the tokamak simulation code(TSC).The main plasma parameters,the plasma configuration evolution and coil current evolution are given out.At the same time,the volt-second consumption during CFETR ramp-up is analyzed for different plasma shaping times and different plasma current ramp rates dIP/dt with/without assisted heating.The results show that the earlier shaping time and the faster plasma current ramp rate with auxiliary heating will enable the volt-second to save 5%-10%.At the same time,the system ability to provide the volt-second is probably 470 V·s.These simulations will give some reference to engineering design for CFETR to some degree.展开更多
The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on th...The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability.展开更多
The effects of linear falling ramp reset pulse related to addressing operation in an alternating current plasma display panel (AC PDP) were studied. The wall charge waveforms were measured by the electrode balance m...The effects of linear falling ramp reset pulse related to addressing operation in an alternating current plasma display panel (AC PDP) were studied. The wall charge waveforms were measured by the electrode balance method in a 12-inch coplanar AC PDP. The wall charge waveforms show the relationship between the slope ratio of the falling ramp reset pulse and the wall charges at the end of the falling ramp reset pulse which influences the addressing stability. Then the effects of the slope ratio of the linear falling ramp reset pulse on the addressing voltage and addressing time were investigated. The experimental results show that the minimum addressing voltage increases with the increase of the slope ratio of the falling ramp reset pulse, and so does the minimum addressing time. Based on the experimental results, the optimization of the addressing time and the slope ratio of the falling ramp pulse is discussed.展开更多
Breakdown voltage (Vbd) and charge to breakdown (Qbd) are two parameters often used to evaluate gate oxide reliability. In this paper,we investigate the effects of measurement methods on Vbd and Qbd of the gate ox...Breakdown voltage (Vbd) and charge to breakdown (Qbd) are two parameters often used to evaluate gate oxide reliability. In this paper,we investigate the effects of measurement methods on Vbd and Qbd of the gate oxide of a 0.18μm dual gate CMOS process. Voltage ramps (V-ramp) and current ramps (J-ramp) are used to evaluate gate oxide reliability. The thin and thick gate oxides are all evaluated in the accumulation condition. Our experimental results show that the measurement methods affect Vbd only slightly but affect Qbd seriously,as do the measurement conditions.This affects the I-t curves obtained with the J-ramp and V-ramp methods. From the I-t curve,it can be seen that Qbd obtained using a J-ramp is much bigger than that with a V-ramp. At the same time, the Weibull slopes of Qbd are definitely smaller than those of Vbd. This means that Vbd is more reliable than Qbd, Thus we should be careful to use Qbd to evaluate the reliability of 0.18μm or beyond CMOS process gate oxide.展开更多
基金supported in part by the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion
文摘In the low aspect ratio torus experiment (LATE) device, plasma current is initiated and ramped up to 20 kA solely by microwave power at the electron cyclotron (EC) range of frequency with a ramp of the external vertical field By for the radial equilibrium of plasma torus at larger currents. Measurements suggest that an energetic electron tail in the energy range of about 200 keV carries the current. The line averaged electron density is higher than the plasma cutoff density, suggesting that tail electrons might be driven by electron Bernstein waves modeconverted from the launched electromagnetic waves.
基金the NIFS Collaboration Research Program (NIFS07KOAR009,NIFS05KUTR012)the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Two-dimensional structure of density fluctuations is examined during the current jump phase, indicating a change from the open magnetic fields to the closed ones. During the smooth current ramp-up phase the two-dimensional contour of the LiI intensity shows vertically alignment, consistent with the magnetic surfaces. At the inflection point in Ip ramp-up the LiI intensity contour becomes flat in the observation regime and then suddenly a steep gradient and higher intensity regime are formed in the vertical direction. This higher intensity corresponds to a burst of LiI waveform. According to these changes in the contour, it is found that, within ~1 ms around the burst of LiI, a low frequency coherent wave with a long wavelength rapidly grows. The relations with other signals (magnetic flux and microwave stray power) are discussed with respect to the topological change in the magnetic configuration and mode conversion of the incident electromagnetic waves.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFE0300500 and 2017YFE0300501)the National Natural Science Foundation of China(Grant Nos.11875290 and 11875253)the Fundamental Research Funds for the Central Universities of China(Grant No.WK3420000004).
文摘The plasma current ramp-up is an important process for tokamak discharge,which directly affects the quality of the plasma and the system resources such as volt-second consumption and plasma current profile.The China Fusion Engineering Test Reactor(CFETR)ramp-up discharge is predicted with the tokamak simulation code(TSC).The main plasma parameters,the plasma configuration evolution and coil current evolution are given out.At the same time,the volt-second consumption during CFETR ramp-up is analyzed for different plasma shaping times and different plasma current ramp rates dIP/dt with/without assisted heating.The results show that the earlier shaping time and the faster plasma current ramp rate with auxiliary heating will enable the volt-second to save 5%-10%.At the same time,the system ability to provide the volt-second is probably 470 V·s.These simulations will give some reference to engineering design for CFETR to some degree.
基金Project supported by the National Natural Science Foundation of China(Grant No.61371033)the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No.142027)+1 种基金the Sichuan Provincial Youth Science and Technology Fund,China(Grant Nos.2014JQ0015and 2013JQ0033)the Fundamental Research Funds for the Central Universities,China(Grant No.SWJTU11CX029)
文摘The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability.
基金supported by the 2002 Ministry of Education Project for Science and Technology (2002,No.77)
文摘The effects of linear falling ramp reset pulse related to addressing operation in an alternating current plasma display panel (AC PDP) were studied. The wall charge waveforms were measured by the electrode balance method in a 12-inch coplanar AC PDP. The wall charge waveforms show the relationship between the slope ratio of the falling ramp reset pulse and the wall charges at the end of the falling ramp reset pulse which influences the addressing stability. Then the effects of the slope ratio of the linear falling ramp reset pulse on the addressing voltage and addressing time were investigated. The experimental results show that the minimum addressing voltage increases with the increase of the slope ratio of the falling ramp reset pulse, and so does the minimum addressing time. Based on the experimental results, the optimization of the addressing time and the slope ratio of the falling ramp pulse is discussed.
文摘Breakdown voltage (Vbd) and charge to breakdown (Qbd) are two parameters often used to evaluate gate oxide reliability. In this paper,we investigate the effects of measurement methods on Vbd and Qbd of the gate oxide of a 0.18μm dual gate CMOS process. Voltage ramps (V-ramp) and current ramps (J-ramp) are used to evaluate gate oxide reliability. The thin and thick gate oxides are all evaluated in the accumulation condition. Our experimental results show that the measurement methods affect Vbd only slightly but affect Qbd seriously,as do the measurement conditions.This affects the I-t curves obtained with the J-ramp and V-ramp methods. From the I-t curve,it can be seen that Qbd obtained using a J-ramp is much bigger than that with a V-ramp. At the same time, the Weibull slopes of Qbd are definitely smaller than those of Vbd. This means that Vbd is more reliable than Qbd, Thus we should be careful to use Qbd to evaluate the reliability of 0.18μm or beyond CMOS process gate oxide.