期刊文献+
共找到7,418篇文章
< 1 2 250 >
每页显示 20 50 100
An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate 被引量:1
1
作者 Yingui Qiu Shuai Huang +3 位作者 Danial Jahed Armaghani Biswajeet Pradhan Annan Zhou Jian Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2873-2897,共25页
As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance le... As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers.On the other hand,a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule.The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications.The previously-proposed intelligent techniques in this field are mostly based on a single or base model with a low level of accuracy.Hence,this study aims to introduce a hybrid randomforest(RF)technique optimized by global harmony search with generalized oppositionbased learning(GOGHS)for forecasting TBM advance rate(AR).Optimizing the RF hyper-parameters in terms of,e.g.,tree number and maximum tree depth is the main objective of using the GOGHS-RF model.In the modelling of this study,a comprehensive databasewith themost influential parameters onTBMtogetherwithTBM AR were used as input and output variables,respectively.To examine the capability and power of the GOGHSRF model,three more hybrid models of particle swarm optimization-RF,genetic algorithm-RF and artificial bee colony-RF were also constructed to forecast TBM AR.Evaluation of the developed models was performed by calculating several performance indices,including determination coefficient(R2),root-mean-square-error(RMSE),and mean-absolute-percentage-error(MAPE).The results showed that theGOGHS-RF is a more accurate technique for estimatingTBMAR compared to the other applied models.The newly-developedGOGHS-RFmodel enjoyed R2=0.9937 and 0.9844,respectively,for train and test stages,which are higher than a pre-developed RF.Also,the importance of the input parameters was interpreted through the SHapley Additive exPlanations(SHAP)method,and it was found that thrust force per cutter is the most important variable on TBMAR.The GOGHS-RF model can be used in mechanized tunnel projects for predicting and checking performance. 展开更多
关键词 Tunnel boring machine random forest GOGHS optimization PSO optimization GA optimization ABC optimization SHAP
下载PDF
基于Random Forest和UHPLC-QTOF-MS^(E)对不同来源龟甲基原的鉴定
2
作者 王献瑞 张佳婷 +5 位作者 张宇 李明华 郭晓晗 荆文光 程显隆 魏锋 《中国药事》 CAS 2024年第9期1008-1019,共12页
目的:基于超高效液相色谱串联四极杆飞行时间质谱(UHPLC-QTOF-MS^(E))分析并经数字量化处理,结合随机森林(Random Forest,RF)算法构建数据辨识模型,以实现中华草龟、巴西龟、台湾龟、鳄鱼龟、鳖甲基原的数字化鉴定。方法:经样品预处理后... 目的:基于超高效液相色谱串联四极杆飞行时间质谱(UHPLC-QTOF-MS^(E))分析并经数字量化处理,结合随机森林(Random Forest,RF)算法构建数据辨识模型,以实现中华草龟、巴西龟、台湾龟、鳄鱼龟、鳖甲基原的数字化鉴定。方法:经样品预处理后,对不同来源、不同批次的龟甲进行UPLC-QTOF-MS^(E)分析,并以混合样品为基准进行峰位校正、提取并经量化处理,获取反映多肽离子信息的精确质量数-保留时间数据对(Exact Mass Retention Time,EMRT)。然后基于信息增益率的特征筛选获取重要多肽离子信息,结合随机森林(RF)算法进行数据建模,同时基于内部交叉验证中的准确率(Acc)、精确率(P)、曲线下面积(AUC)等参数进行模型评价。最后基于最优模型进行龟甲基原的鉴定验证分析。结果:基于信息增益率的特征筛选,得到71个特征多肽信息,建立的RF模型具有优秀的辨识效果,准确率、精确率以及AUC均大于0.950且外部鉴定验证的正确率为100.0%。结论:基于UHPLC-QTOF-MS^(E)分析,并结合RF算法能够高效准确地实现不同来源龟甲基原的数字化鉴定,可为龟甲的质量控制及基原考证提供参考和帮助。 展开更多
关键词 龟甲 基原鉴定 机器学习 随机森林 超高效液相色谱串联四极杆飞行时间质谱
下载PDF
Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization 被引量:24
3
作者 Xinzhi Zhou Haijia Wen +2 位作者 Yalan Zhang Jiahui Xu Wengang Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期355-373,共19页
The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical ... The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models. 展开更多
关键词 Landslide susceptibility mapping GeoDetector Recursive feature elimination random forest Factor optimization
下载PDF
一种基于KMeans与Random Forest的异常温升捕捉方法
4
作者 汪海良 《现代建筑电气》 2024年第6期21-26,49,共7页
针对线路老化、线路过载的火灾频发问题,分析了线路老化、线路过载与异常温升之间的关联性,以电流值、线缆温度作为输入,利用KMeans聚类算法划分可能存在异常温升的区间,通过Random Forest算法识别线路过载问题,可以提前通知用户整改线... 针对线路老化、线路过载的火灾频发问题,分析了线路老化、线路过载与异常温升之间的关联性,以电流值、线缆温度作为输入,利用KMeans聚类算法划分可能存在异常温升的区间,通过Random Forest算法识别线路过载问题,可以提前通知用户整改线路,预防火灾的发生。 展开更多
关键词 线路过载 异常温升 random forest KMeans
下载PDF
A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm
5
作者 Tie Yan Rui Xu +2 位作者 Shi-Hui Sun Zhao-Kai Hou Jin-Yu Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1135-1148,共14页
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ... Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation. 展开更多
关键词 Intelligent drilling Closed-loop drilling Lithology identification random forest algorithm Feature extraction
下载PDF
Detecting XSS with Random Forest and Multi-Channel Feature Extraction
6
作者 Qiurong Qin Yueqin Li +3 位作者 Yajie Mi Jinhui Shen Kexin Wu Zhenzhao Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期843-874,共32页
In the era of the Internet,widely used web applications have become the target of hacker attacks because they contain a large amount of personal information.Among these vulnerabilities,stealing private data through cr... In the era of the Internet,widely used web applications have become the target of hacker attacks because they contain a large amount of personal information.Among these vulnerabilities,stealing private data through crosssite scripting(XSS)attacks is one of the most commonly used attacks by hackers.Currently,deep learning-based XSS attack detection methods have good application prospects;however,they suffer from problems such as being prone to overfitting,a high false alarm rate,and low accuracy.To address these issues,we propose a multi-stage feature extraction and fusion model for XSS detection based on Random Forest feature enhancement.The model utilizes RandomForests to capture the intrinsic structure and patterns of the data by extracting leaf node indices as features,which are subsequentlymergedwith the original data features to forma feature setwith richer information content.Further feature extraction is conducted through three parallel channels.Channel I utilizes parallel onedimensional convolutional layers(1Dconvolutional layers)with different convolutional kernel sizes to extract local features at different scales and performmulti-scale feature fusion;Channel II employsmaximum one-dimensional pooling layers(max 1D pooling layers)of various sizes to extract key features from the data;and Channel III extracts global information bi-directionally using a Bi-Directional Long-Short TermMemory Network(Bi-LSTM)and incorporates a multi-head attention mechanism to enhance global features.Finally,effective classification and prediction of XSS are performed by fusing the features of the three channels.To test the effectiveness of the model,we conduct experiments on six datasets.We achieve an accuracy of 100%on the UNSW-NB15 dataset and 99.99%on the CICIDS2017 dataset,which is higher than that of the existing models. 展开更多
关键词 random forest feature enhancement three-channel parallelism XSS detection
下载PDF
Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures
7
作者 Xue-Qin Li Lu-Kai Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期665-684,共20页
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ... Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures. 展开更多
关键词 random forest reliability-based design optimization ensemble learning machine learning
下载PDF
Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer
8
作者 Shengdong Cheng Juncheng Gao Hongning Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期871-892,共22页
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl... Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions. 展开更多
关键词 random forest regression model pile drivability Bayesian optimization particle swarm optimization
下载PDF
Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest:A Case Study in Henan Province,China
9
作者 SHI Xiaoliang CHEN Jiajun +2 位作者 DING Hao YANG Yuanqi ZHANG Yan 《Chinese Geographical Science》 SCIE CSCD 2024年第2期342-356,共15页
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r... Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield. 展开更多
关键词 winter wheat yield estimation sparrow search algorithm combined with random forest(SSA-rf) machine learning multi-source indicator optimal lead time Henan Province China
下载PDF
Power of SAR Imagery and Machine Learning in Monitoring Ulva prolifera:A Case Study of Sentinel-1 and Random Forest
10
作者 ZHENG Longxiao WU Mengquan +5 位作者 XUE Mingyue WU Hao LIANG Feng LI Xiangpeng HOU Shimin LIU Jiayan 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1134-1143,共10页
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu... Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment. 展开更多
关键词 Ulva prolifera random forest Sentinel-1 Synthetic Aperture Radar(SAR)image machine learning remote sensing Google Earth Engine South Yellow Sea of China
下载PDF
Predicting Surface Urban Heat Island in Meihekou City, China: A Combination Method of Monte Carlo and Random Forest 被引量:3
11
作者 ZHANG Yao LIU Jiafu WEN Zhuyun 《Chinese Geographical Science》 SCIE CSCD 2021年第4期659-670,共12页
Given the rapid urbanization worldwide, Urban Heat Island(UHI) effect has been a severe issue limiting urban sustainability in both large and small cities. In order to study the spatial pattern of Surface urban heat i... Given the rapid urbanization worldwide, Urban Heat Island(UHI) effect has been a severe issue limiting urban sustainability in both large and small cities. In order to study the spatial pattern of Surface urban heat island(SUHI) in China’s Meihekou City, a combination method of Monte Carlo and Random Forest Regression(MC-RFR) is developed to construct the relationship between landscape pattern indices and Land Surface Temperature(LST). In this method, Monte Carlo acceptance-rejection sampling was added to the bootstrap layer of RFR to ensure the sensitivity of RFR to outliners of SUHI effect. The SHUI in 2030 was predicted by using this MC-RFR and the modeled future landscape pattern by Cellular Automata and Markov combination model(CA-Markov). Results reveal that forestland can greatly alleviate the impact of SUHI effect, while reasonable construction of urban land can also slow down the rising trend of SUHI. MC-RFR performs better for characterizing the relationship between landscape pattern and LST than single RFR or Linear Regression model. By 2030, the overall SUHI effect of Meihekou will be greatly enhanced, and the center of urban development will gradually shift to the central and western regions of the city. We suggest that urban designer and managers should concentrate vegetation and disperse built-up land to weaken the SUHI in the construction of new urban areas for its sustainability. 展开更多
关键词 Monte Carlo and random forest Regression(MC-rfR) landscape pattern surface heat island effect Cellular Automata and Markov combination model(CA-Markov)
下载PDF
A HybridManufacturing ProcessMonitoringMethod Using Stacked Gated Recurrent Unit and Random Forest
12
作者 Chao-Lung Yang Atinkut Atinafu Yilma +2 位作者 Bereket Haile Woldegiorgis Hendrik Tampubolon Hendri Sutrisno 《Intelligent Automation & Soft Computing》 2024年第2期233-254,共22页
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ... This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems. 展开更多
关键词 Smart manufacturing process monitoring quality control gated recurrent unit neural network random forest
下载PDF
Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows
13
作者 Guruh Samodra Ngadisih Ferman Setia Nugroho 《Artificial Intelligence in Geosciences》 2024年第1期320-335,共16页
Machine learning(ML)algorithms are frequently used in landslide susceptibility modeling.Different data handling strategies may generate variations in landslide susceptibility modeling,even when using the same ML algor... Machine learning(ML)algorithms are frequently used in landslide susceptibility modeling.Different data handling strategies may generate variations in landslide susceptibility modeling,even when using the same ML algorithm.This research aims to compare the combinations of inventory data handling,cross validation(CV),and hyperparameter tuning strategies to generate landslide susceptibility maps.The results are expected to provide a general strategy for landslide susceptibility modeling using ML techniques.The authors employed eight landslide inventory data handling scenarios to convert a landslide polygon into a landslide point,i.e.,the landslide point is located on the toe(minimum height),on the scarp(maximum height),at the center of the landslide,randomly inside the polygon(1 point),randomly inside the polygon(3 points),randomly inside the polygon(5 points),randomly inside the polygon(10 points),and 15 m grid sampling.Random forest models using CV-nonspatial hyperparameter tuning,spatial CV-spatial hyperparameter tuning,and spatial CV-forward feature selection-no hyperparameter tuning were applied for each data handling strategy.The combination generated 24 random forest ML workflows,which are applied using a complete inventory of 743 landslides triggered by Tropical Cyclone Cempaka(2017)in Pacitan Regency,Indonesia,and 11 landslide controlling factors.The results show that grid sampling with spatial CV and spatial hyperparameter tuning is favorable because the strategy can minimize overfitting,generate a relatively high-performance predictive model,and reduce the appearance of susceptibility artifacts in the landslide area.Careful data inventory handling,CV,and hyperparameter tuning strategies should be considered in landslide susceptibility modeling to increase the applicability of landslide susceptibility maps in practical application. 展开更多
关键词 LANDSLIDE Machine learning random forest Sampling strategies Spatial cross validation Hyperparameter tuning SUSCEPTIBILITY
下载PDF
基于Random Forest和层次分析法的混凝土连续梁桥耐久性评估
14
作者 王璐瑶 常兴科 张海君 《沈阳大学学报(自然科学版)》 CAS 2024年第3期255-261,共7页
为了准确快速地评估混凝土连续梁桥的耐久性,避免造成结构耐久性评估结果受桥梁技术人员因对规范不熟悉的主观因素影响,基于层次分析法建立适用于混凝土连续梁桥的耐久性评估指标体系,构建随机森林耐久性评估模型。经过参数调优获得随... 为了准确快速地评估混凝土连续梁桥的耐久性,避免造成结构耐久性评估结果受桥梁技术人员因对规范不熟悉的主观因素影响,基于层次分析法建立适用于混凝土连续梁桥的耐久性评估指标体系,构建随机森林耐久性评估模型。经过参数调优获得随机森林模型最优参数组合为105、10、2、2。结果表明:使用随机森林耐久性评估模型的精确率、召回率、F1值均大于87%;主梁裂缝、重载率、下部结构保护层厚度安全系数等对混凝土连续梁桥耐久性的影响依次递减。将评估结果与桥检报告技术状况等级、课题软件结果对比,验证了模型的可靠性。 展开更多
关键词 混凝土连续梁桥 耐久性 层次分析法 随机森林 评估指标体系
下载PDF
A Hadoop Performance Prediction Model Based on Random Forest
15
作者 Zhendong Bei Zhibin Yu +4 位作者 Huiling Zhang Chengzhong Xu Shenzhong Feng Zhenjiang Dong Hengsheng Zhang 《ZTE Communications》 2013年第2期38-44,共7页
MapReduce is a programming model for processing large data sets, and Hadoop is the most popular open-source implementation of MapReduce. To achieve high performance, up to 190 Hadoop configuration parameters must be m... MapReduce is a programming model for processing large data sets, and Hadoop is the most popular open-source implementation of MapReduce. To achieve high performance, up to 190 Hadoop configuration parameters must be manually tunned. This is not only time-consuming but also error-pron. In this paper, we propose a new performance model based on random forest, a recently devel- oped machine-learning algorithm. The model, called RFMS, is used to predict the performance of a Hadoop system according to the system' s configuration parameters. RFMS is created from 2000 distinct fine-grained performance observations with different Hadoop configurations. We test RFMS against the measured performance of representative workloads from the Hadoop Micro-benchmark suite. The results show that the prediction accuracy of RFMS achieves 95% on average and up to 99%. This new, highly accurate prediction model can be used to automatically optimize the performance of Hadoop systems. 展开更多
关键词 big data cloud computing MAPREDUCE HADOOP random forest micro-benchmark
下载PDF
PFP-RFSM: Protein fold prediction by using random forests and sequence motifs
16
作者 Junfei Li Jigang Wu Ke Chen 《Journal of Biomedical Science and Engineering》 2013年第12期1161-1170,共10页
Protein tertiary structure is indispensible in revealing the biological functions of proteins. De novo perdition of protein tertiary structure is dependent on protein fold recognition. This study proposes a novel meth... Protein tertiary structure is indispensible in revealing the biological functions of proteins. De novo perdition of protein tertiary structure is dependent on protein fold recognition. This study proposes a novel method for prediction of protein fold types which takes primary sequence as input. The proposed method, PFP-RFSM, employs a random forest classifier and a comprehensive feature representation, including both sequence and predicted structure descriptors. Particularly, we propose a method for generation of features based on sequence motifs and those features are firstly employed in protein fold prediction. PFP-RFSM and ten representative protein fold predictors are validated in a benchmark dataset consisting of 27 fold types. Experiments demonstrate that PFP-RFSM outperforms all existing protein fold predictors and improves the success rates by 2%-14%. The results suggest sequence motifs are effective in classification and analysis of protein sequences. 展开更多
关键词 Protein FOLD Structure Analysis random forest SEQUENCE MOTIFS
下载PDF
Prediction of rockburst classification using Random Forest 被引量:72
17
作者 董陇军 李夕兵 彭康 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期472-477,共6页
The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-s... The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-situ stresses, uniaxial compressive strength and tensile strength of rock, and the elastic energy index of rock, were selected in the analysis. The traditional indicators were summarized and divided into indexes I and 1I. Random Forest model and criterion were obtained through training 36 sets of rockburst samples which come from underground rock projects in domestic and abroad. Another 10 samples were tested and evaluated with the model. The evaluated results agree well with the practical records. Comparing the results of support vector machine (SVM) method, and artificial neural network (ANN) method with random forest method, the corresponding misjudgment ratios are 10%, 20%, and 0, respectively. The misjudgment ratio using index I is smaller than that using index II. It is suggested that using the index I and RF model can accurately classify rockburst grade. 展开更多
关键词 mining engineering tunnel engineering underground caverns ROCKBURST random forest
下载PDF
Design and analysis of traffic incident detection based on random forest 被引量:8
18
作者 刘擎超 陆建 陈淑燕 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期88-95,共8页
In order to avoid the noise and over fitting and further improve the limited classification performance of the real decision tree, a traffic incident detection method based on the random forest algorithm is presented.... In order to avoid the noise and over fitting and further improve the limited classification performance of the real decision tree, a traffic incident detection method based on the random forest algorithm is presented. From the perspective of classification strength and correlation, three experiments are performed to investigate the potential application of random forest to traffic incident detection: comparison with a different number of decision trees; comparison with different decision trees; comparison with the neural network. The real traffic data of the 1-880 database is used in the experiments. The detection performance is evaluated by the common criteria including the detection rate, the false alarm rate, the mean time to detection, the classification rate and the area under the curve of the receiver operating characteristic (ROC). The experimental results indicate that the model based on random forest can improve the decision rate, reduce the testing time, and obtain a higher classification rate. Meanwhile, it is competitive compared with multi-layer feed forward neural networks (MLF). 展开更多
关键词 intelligent transportation system random forest traffic incident detection traffic model
下载PDF
基于K-means和Random Forest的WiFi室内定位方法 被引量:10
19
作者 李军 何星 +1 位作者 蔡云泽 徐琴 《控制工程》 CSCD 北大核心 2017年第4期787-792,共6页
为了减小室内环境因素对室内WiFi定位的影响,降低定位成本,提高定位精度以及扩大定位区域,通过对室内定位系统和机器学习算法的讨论,提出了一种基于K-means和Random Forest融合的WiFi室内定位算法。针对室内WiFi信号强度分布的特点,该... 为了减小室内环境因素对室内WiFi定位的影响,降低定位成本,提高定位精度以及扩大定位区域,通过对室内定位系统和机器学习算法的讨论,提出了一种基于K-means和Random Forest融合的WiFi室内定位算法。针对室内WiFi信号强度分布的特点,该算法通过K-means聚类改进算法对数据进行初始分类,然后使用Random Forest对初始分类结果进行二次分类。实验结果表明,该定位算法的定位精度在2米以内的概率为89.1%,达到预期的定位效果,同时对缺失值数据具有较好的适应能力。 展开更多
关键词 室内定位 WIFI randomforest K-MEANS 多模融合
下载PDF
基于Random Forest的水稻细菌性条斑病识别方法研究 被引量:11
20
作者 袁培森 曹益飞 +2 位作者 马千里 王浩云 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2021年第1期139-145,208,共8页
为了快速、准确、有效地识别发病早期的细菌性条斑病,提出基于随机森林(Random forest,RF)算法的水稻细菌性条斑病识别方法,利用光谱成像技术获取该病害的高光谱数据,通过多元散射校正减少和消除噪声及基线漂移对光谱数据的不利影响。... 为了快速、准确、有效地识别发病早期的细菌性条斑病,提出基于随机森林(Random forest,RF)算法的水稻细菌性条斑病识别方法,利用光谱成像技术获取该病害的高光谱数据,通过多元散射校正减少和消除噪声及基线漂移对光谱数据的不利影响。利用随机森林特征重要性指标,选取逻辑回归(LR)、朴素贝叶斯(NB)、决策树(DT)、支持向量分类机(SVC)、k最近邻(KNN)和梯度提升决策树(Gradient boosting decision tree,GBDT)算法进行对比试验。同时筛选出12个位于450~664 nm范围内对识别模型有重要影响的光谱波段,并与全波段进行分类结果比较。试验结果表明:RF算法的分类准确率为95.24%,与试验选取的其他算法相比,效果最优,比NB准确率提高了20.97个百分点;与全波段分类结果相比,利用RF算法基于12个波长的识别,波长数减少了98.05%,识别精确率为94.66%,召回率为99.55%,F1值为97.04%,准确率为94.32%。虽然精确率减少了2.97个百分点、准确率减少了0.85个百分点,但召回率增加了4.4个百分点、F1值增加了0.67个百分点,模型精度满足要求。 展开更多
关键词 水稻表型 随机森林 高光谱成像 细菌性条斑病 病害识别
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部