As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance le...As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers.On the other hand,a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule.The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications.The previously-proposed intelligent techniques in this field are mostly based on a single or base model with a low level of accuracy.Hence,this study aims to introduce a hybrid randomforest(RF)technique optimized by global harmony search with generalized oppositionbased learning(GOGHS)for forecasting TBM advance rate(AR).Optimizing the RF hyper-parameters in terms of,e.g.,tree number and maximum tree depth is the main objective of using the GOGHS-RF model.In the modelling of this study,a comprehensive databasewith themost influential parameters onTBMtogetherwithTBM AR were used as input and output variables,respectively.To examine the capability and power of the GOGHSRF model,three more hybrid models of particle swarm optimization-RF,genetic algorithm-RF and artificial bee colony-RF were also constructed to forecast TBM AR.Evaluation of the developed models was performed by calculating several performance indices,including determination coefficient(R2),root-mean-square-error(RMSE),and mean-absolute-percentage-error(MAPE).The results showed that theGOGHS-RF is a more accurate technique for estimatingTBMAR compared to the other applied models.The newly-developedGOGHS-RFmodel enjoyed R2=0.9937 and 0.9844,respectively,for train and test stages,which are higher than a pre-developed RF.Also,the importance of the input parameters was interpreted through the SHapley Additive exPlanations(SHAP)method,and it was found that thrust force per cutter is the most important variable on TBMAR.The GOGHS-RF model can be used in mechanized tunnel projects for predicting and checking performance.展开更多
The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical ...The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.展开更多
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ...Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.展开更多
In the era of the Internet,widely used web applications have become the target of hacker attacks because they contain a large amount of personal information.Among these vulnerabilities,stealing private data through cr...In the era of the Internet,widely used web applications have become the target of hacker attacks because they contain a large amount of personal information.Among these vulnerabilities,stealing private data through crosssite scripting(XSS)attacks is one of the most commonly used attacks by hackers.Currently,deep learning-based XSS attack detection methods have good application prospects;however,they suffer from problems such as being prone to overfitting,a high false alarm rate,and low accuracy.To address these issues,we propose a multi-stage feature extraction and fusion model for XSS detection based on Random Forest feature enhancement.The model utilizes RandomForests to capture the intrinsic structure and patterns of the data by extracting leaf node indices as features,which are subsequentlymergedwith the original data features to forma feature setwith richer information content.Further feature extraction is conducted through three parallel channels.Channel I utilizes parallel onedimensional convolutional layers(1Dconvolutional layers)with different convolutional kernel sizes to extract local features at different scales and performmulti-scale feature fusion;Channel II employsmaximum one-dimensional pooling layers(max 1D pooling layers)of various sizes to extract key features from the data;and Channel III extracts global information bi-directionally using a Bi-Directional Long-Short TermMemory Network(Bi-LSTM)and incorporates a multi-head attention mechanism to enhance global features.Finally,effective classification and prediction of XSS are performed by fusing the features of the three channels.To test the effectiveness of the model,we conduct experiments on six datasets.We achieve an accuracy of 100%on the UNSW-NB15 dataset and 99.99%on the CICIDS2017 dataset,which is higher than that of the existing models.展开更多
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ...Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.展开更多
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl...Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions.展开更多
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r...Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
Given the rapid urbanization worldwide, Urban Heat Island(UHI) effect has been a severe issue limiting urban sustainability in both large and small cities. In order to study the spatial pattern of Surface urban heat i...Given the rapid urbanization worldwide, Urban Heat Island(UHI) effect has been a severe issue limiting urban sustainability in both large and small cities. In order to study the spatial pattern of Surface urban heat island(SUHI) in China’s Meihekou City, a combination method of Monte Carlo and Random Forest Regression(MC-RFR) is developed to construct the relationship between landscape pattern indices and Land Surface Temperature(LST). In this method, Monte Carlo acceptance-rejection sampling was added to the bootstrap layer of RFR to ensure the sensitivity of RFR to outliners of SUHI effect. The SHUI in 2030 was predicted by using this MC-RFR and the modeled future landscape pattern by Cellular Automata and Markov combination model(CA-Markov). Results reveal that forestland can greatly alleviate the impact of SUHI effect, while reasonable construction of urban land can also slow down the rising trend of SUHI. MC-RFR performs better for characterizing the relationship between landscape pattern and LST than single RFR or Linear Regression model. By 2030, the overall SUHI effect of Meihekou will be greatly enhanced, and the center of urban development will gradually shift to the central and western regions of the city. We suggest that urban designer and managers should concentrate vegetation and disperse built-up land to weaken the SUHI in the construction of new urban areas for its sustainability.展开更多
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ...This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.展开更多
Machine learning(ML)algorithms are frequently used in landslide susceptibility modeling.Different data handling strategies may generate variations in landslide susceptibility modeling,even when using the same ML algor...Machine learning(ML)algorithms are frequently used in landslide susceptibility modeling.Different data handling strategies may generate variations in landslide susceptibility modeling,even when using the same ML algorithm.This research aims to compare the combinations of inventory data handling,cross validation(CV),and hyperparameter tuning strategies to generate landslide susceptibility maps.The results are expected to provide a general strategy for landslide susceptibility modeling using ML techniques.The authors employed eight landslide inventory data handling scenarios to convert a landslide polygon into a landslide point,i.e.,the landslide point is located on the toe(minimum height),on the scarp(maximum height),at the center of the landslide,randomly inside the polygon(1 point),randomly inside the polygon(3 points),randomly inside the polygon(5 points),randomly inside the polygon(10 points),and 15 m grid sampling.Random forest models using CV-nonspatial hyperparameter tuning,spatial CV-spatial hyperparameter tuning,and spatial CV-forward feature selection-no hyperparameter tuning were applied for each data handling strategy.The combination generated 24 random forest ML workflows,which are applied using a complete inventory of 743 landslides triggered by Tropical Cyclone Cempaka(2017)in Pacitan Regency,Indonesia,and 11 landslide controlling factors.The results show that grid sampling with spatial CV and spatial hyperparameter tuning is favorable because the strategy can minimize overfitting,generate a relatively high-performance predictive model,and reduce the appearance of susceptibility artifacts in the landslide area.Careful data inventory handling,CV,and hyperparameter tuning strategies should be considered in landslide susceptibility modeling to increase the applicability of landslide susceptibility maps in practical application.展开更多
MapReduce is a programming model for processing large data sets, and Hadoop is the most popular open-source implementation of MapReduce. To achieve high performance, up to 190 Hadoop configuration parameters must be m...MapReduce is a programming model for processing large data sets, and Hadoop is the most popular open-source implementation of MapReduce. To achieve high performance, up to 190 Hadoop configuration parameters must be manually tunned. This is not only time-consuming but also error-pron. In this paper, we propose a new performance model based on random forest, a recently devel- oped machine-learning algorithm. The model, called RFMS, is used to predict the performance of a Hadoop system according to the system' s configuration parameters. RFMS is created from 2000 distinct fine-grained performance observations with different Hadoop configurations. We test RFMS against the measured performance of representative workloads from the Hadoop Micro-benchmark suite. The results show that the prediction accuracy of RFMS achieves 95% on average and up to 99%. This new, highly accurate prediction model can be used to automatically optimize the performance of Hadoop systems.展开更多
Protein tertiary structure is indispensible in revealing the biological functions of proteins. De novo perdition of protein tertiary structure is dependent on protein fold recognition. This study proposes a novel meth...Protein tertiary structure is indispensible in revealing the biological functions of proteins. De novo perdition of protein tertiary structure is dependent on protein fold recognition. This study proposes a novel method for prediction of protein fold types which takes primary sequence as input. The proposed method, PFP-RFSM, employs a random forest classifier and a comprehensive feature representation, including both sequence and predicted structure descriptors. Particularly, we propose a method for generation of features based on sequence motifs and those features are firstly employed in protein fold prediction. PFP-RFSM and ten representative protein fold predictors are validated in a benchmark dataset consisting of 27 fold types. Experiments demonstrate that PFP-RFSM outperforms all existing protein fold predictors and improves the success rates by 2%-14%. The results suggest sequence motifs are effective in classification and analysis of protein sequences.展开更多
The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-s...The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-situ stresses, uniaxial compressive strength and tensile strength of rock, and the elastic energy index of rock, were selected in the analysis. The traditional indicators were summarized and divided into indexes I and 1I. Random Forest model and criterion were obtained through training 36 sets of rockburst samples which come from underground rock projects in domestic and abroad. Another 10 samples were tested and evaluated with the model. The evaluated results agree well with the practical records. Comparing the results of support vector machine (SVM) method, and artificial neural network (ANN) method with random forest method, the corresponding misjudgment ratios are 10%, 20%, and 0, respectively. The misjudgment ratio using index I is smaller than that using index II. It is suggested that using the index I and RF model can accurately classify rockburst grade.展开更多
In order to avoid the noise and over fitting and further improve the limited classification performance of the real decision tree, a traffic incident detection method based on the random forest algorithm is presented....In order to avoid the noise and over fitting and further improve the limited classification performance of the real decision tree, a traffic incident detection method based on the random forest algorithm is presented. From the perspective of classification strength and correlation, three experiments are performed to investigate the potential application of random forest to traffic incident detection: comparison with a different number of decision trees; comparison with different decision trees; comparison with the neural network. The real traffic data of the 1-880 database is used in the experiments. The detection performance is evaluated by the common criteria including the detection rate, the false alarm rate, the mean time to detection, the classification rate and the area under the curve of the receiver operating characteristic (ROC). The experimental results indicate that the model based on random forest can improve the decision rate, reduce the testing time, and obtain a higher classification rate. Meanwhile, it is competitive compared with multi-layer feed forward neural networks (MLF).展开更多
基金the National Natural Science Foundation of China(Grant 42177164)the Distinguished Youth Science Foundation of Hunan Province of China(2022JJ10073).
文摘As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers.On the other hand,a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule.The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications.The previously-proposed intelligent techniques in this field are mostly based on a single or base model with a low level of accuracy.Hence,this study aims to introduce a hybrid randomforest(RF)technique optimized by global harmony search with generalized oppositionbased learning(GOGHS)for forecasting TBM advance rate(AR).Optimizing the RF hyper-parameters in terms of,e.g.,tree number and maximum tree depth is the main objective of using the GOGHS-RF model.In the modelling of this study,a comprehensive databasewith themost influential parameters onTBMtogetherwithTBM AR were used as input and output variables,respectively.To examine the capability and power of the GOGHSRF model,three more hybrid models of particle swarm optimization-RF,genetic algorithm-RF and artificial bee colony-RF were also constructed to forecast TBM AR.Evaluation of the developed models was performed by calculating several performance indices,including determination coefficient(R2),root-mean-square-error(RMSE),and mean-absolute-percentage-error(MAPE).The results showed that theGOGHS-RF is a more accurate technique for estimatingTBMAR compared to the other applied models.The newly-developedGOGHS-RFmodel enjoyed R2=0.9937 and 0.9844,respectively,for train and test stages,which are higher than a pre-developed RF.Also,the importance of the input parameters was interpreted through the SHapley Additive exPlanations(SHAP)method,and it was found that thrust force per cutter is the most important variable on TBMAR.The GOGHS-RF model can be used in mechanized tunnel projects for predicting and checking performance.
文摘目的:基于超高效液相色谱串联四极杆飞行时间质谱(UHPLC-QTOF-MS^(E))分析并经数字量化处理,结合随机森林(Random Forest,RF)算法构建数据辨识模型,以实现中华草龟、巴西龟、台湾龟、鳄鱼龟、鳖甲基原的数字化鉴定。方法:经样品预处理后,对不同来源、不同批次的龟甲进行UPLC-QTOF-MS^(E)分析,并以混合样品为基准进行峰位校正、提取并经量化处理,获取反映多肽离子信息的精确质量数-保留时间数据对(Exact Mass Retention Time,EMRT)。然后基于信息增益率的特征筛选获取重要多肽离子信息,结合随机森林(RF)算法进行数据建模,同时基于内部交叉验证中的准确率(Acc)、精确率(P)、曲线下面积(AUC)等参数进行模型评价。最后基于最优模型进行龟甲基原的鉴定验证分析。结果:基于信息增益率的特征筛选,得到71个特征多肽信息,建立的RF模型具有优秀的辨识效果,准确率、精确率以及AUC均大于0.950且外部鉴定验证的正确率为100.0%。结论:基于UHPLC-QTOF-MS^(E)分析,并结合RF算法能够高效准确地实现不同来源龟甲基原的数字化鉴定,可为龟甲的质量控制及基原考证提供参考和帮助。
文摘The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.
基金financially supported by the National Natural Science Foundation of China(No.52174001)the National Natural Science Foundation of China(No.52004064)+1 种基金the Hainan Province Science and Technology Special Fund “Research on Real-time Intelligent Sensing Technology for Closed-loop Drilling of Oil and Gas Reservoirs in Deepwater Drilling”(ZDYF2023GXJS012)Heilongjiang Provincial Government and Daqing Oilfield's first batch of the scientific and technological key project “Research on the Construction Technology of Gulong Shale Oil Big Data Analysis System”(DQYT-2022-JS-750)。
文摘Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.
文摘In the era of the Internet,widely used web applications have become the target of hacker attacks because they contain a large amount of personal information.Among these vulnerabilities,stealing private data through crosssite scripting(XSS)attacks is one of the most commonly used attacks by hackers.Currently,deep learning-based XSS attack detection methods have good application prospects;however,they suffer from problems such as being prone to overfitting,a high false alarm rate,and low accuracy.To address these issues,we propose a multi-stage feature extraction and fusion model for XSS detection based on Random Forest feature enhancement.The model utilizes RandomForests to capture the intrinsic structure and patterns of the data by extracting leaf node indices as features,which are subsequentlymergedwith the original data features to forma feature setwith richer information content.Further feature extraction is conducted through three parallel channels.Channel I utilizes parallel onedimensional convolutional layers(1Dconvolutional layers)with different convolutional kernel sizes to extract local features at different scales and performmulti-scale feature fusion;Channel II employsmaximum one-dimensional pooling layers(max 1D pooling layers)of various sizes to extract key features from the data;and Channel III extracts global information bi-directionally using a Bi-Directional Long-Short TermMemory Network(Bi-LSTM)and incorporates a multi-head attention mechanism to enhance global features.Finally,effective classification and prediction of XSS are performed by fusing the features of the three channels.To test the effectiveness of the model,we conduct experiments on six datasets.We achieve an accuracy of 100%on the UNSW-NB15 dataset and 99.99%on the CICIDS2017 dataset,which is higher than that of the existing models.
基金supported by the National Natural Science Foundation of China under Grant(Number:52105136)the Hong Kong Scholar program under Grant(Number:XJ2022013)China Postdoctoral Science Foundation under Grant(Number:2021M690290)Academic Excellence Foundation of BUAA under Grant(Number:BY2004103).
文摘Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.
基金supported by the National Science Foundation of China(42107183).
文摘Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions.
基金Under the auspices of National Natural Science Foundation of China(No.52079103)。
文摘Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.
基金Under the auspices of National Natural Science Foundation of China(No.41977411,41771383)Technology Research Project of the Education Department of Jilin Province(No.JJKH20210445KJ)。
文摘Given the rapid urbanization worldwide, Urban Heat Island(UHI) effect has been a severe issue limiting urban sustainability in both large and small cities. In order to study the spatial pattern of Surface urban heat island(SUHI) in China’s Meihekou City, a combination method of Monte Carlo and Random Forest Regression(MC-RFR) is developed to construct the relationship between landscape pattern indices and Land Surface Temperature(LST). In this method, Monte Carlo acceptance-rejection sampling was added to the bootstrap layer of RFR to ensure the sensitivity of RFR to outliners of SUHI effect. The SHUI in 2030 was predicted by using this MC-RFR and the modeled future landscape pattern by Cellular Automata and Markov combination model(CA-Markov). Results reveal that forestland can greatly alleviate the impact of SUHI effect, while reasonable construction of urban land can also slow down the rising trend of SUHI. MC-RFR performs better for characterizing the relationship between landscape pattern and LST than single RFR or Linear Regression model. By 2030, the overall SUHI effect of Meihekou will be greatly enhanced, and the center of urban development will gradually shift to the central and western regions of the city. We suggest that urban designer and managers should concentrate vegetation and disperse built-up land to weaken the SUHI in the construction of new urban areas for its sustainability.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.111-2221 E-011081 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciatedWe also thank Wang Jhan Yang Charitable Trust Fund(Contract No.WJY 2020-HR-01)for its financial support.
文摘This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.
文摘Machine learning(ML)algorithms are frequently used in landslide susceptibility modeling.Different data handling strategies may generate variations in landslide susceptibility modeling,even when using the same ML algorithm.This research aims to compare the combinations of inventory data handling,cross validation(CV),and hyperparameter tuning strategies to generate landslide susceptibility maps.The results are expected to provide a general strategy for landslide susceptibility modeling using ML techniques.The authors employed eight landslide inventory data handling scenarios to convert a landslide polygon into a landslide point,i.e.,the landslide point is located on the toe(minimum height),on the scarp(maximum height),at the center of the landslide,randomly inside the polygon(1 point),randomly inside the polygon(3 points),randomly inside the polygon(5 points),randomly inside the polygon(10 points),and 15 m grid sampling.Random forest models using CV-nonspatial hyperparameter tuning,spatial CV-spatial hyperparameter tuning,and spatial CV-forward feature selection-no hyperparameter tuning were applied for each data handling strategy.The combination generated 24 random forest ML workflows,which are applied using a complete inventory of 743 landslides triggered by Tropical Cyclone Cempaka(2017)in Pacitan Regency,Indonesia,and 11 landslide controlling factors.The results show that grid sampling with spatial CV and spatial hyperparameter tuning is favorable because the strategy can minimize overfitting,generate a relatively high-performance predictive model,and reduce the appearance of susceptibility artifacts in the landslide area.Careful data inventory handling,CV,and hyperparameter tuning strategies should be considered in landslide susceptibility modeling to increase the applicability of landslide susceptibility maps in practical application.
基金supported by the cooperation project of Research on Green Cloud IDC Resource Scheduling with ZTE Corporation
文摘MapReduce is a programming model for processing large data sets, and Hadoop is the most popular open-source implementation of MapReduce. To achieve high performance, up to 190 Hadoop configuration parameters must be manually tunned. This is not only time-consuming but also error-pron. In this paper, we propose a new performance model based on random forest, a recently devel- oped machine-learning algorithm. The model, called RFMS, is used to predict the performance of a Hadoop system according to the system' s configuration parameters. RFMS is created from 2000 distinct fine-grained performance observations with different Hadoop configurations. We test RFMS against the measured performance of representative workloads from the Hadoop Micro-benchmark suite. The results show that the prediction accuracy of RFMS achieves 95% on average and up to 99%. This new, highly accurate prediction model can be used to automatically optimize the performance of Hadoop systems.
文摘Protein tertiary structure is indispensible in revealing the biological functions of proteins. De novo perdition of protein tertiary structure is dependent on protein fold recognition. This study proposes a novel method for prediction of protein fold types which takes primary sequence as input. The proposed method, PFP-RFSM, employs a random forest classifier and a comprehensive feature representation, including both sequence and predicted structure descriptors. Particularly, we propose a method for generation of features based on sequence motifs and those features are firstly employed in protein fold prediction. PFP-RFSM and ten representative protein fold predictors are validated in a benchmark dataset consisting of 27 fold types. Experiments demonstrate that PFP-RFSM outperforms all existing protein fold predictors and improves the success rates by 2%-14%. The results suggest sequence motifs are effective in classification and analysis of protein sequences.
基金Projects (50934006, 10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported bythe National Basic Research Program of China+1 种基金Project (kjdb2010-6) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, ChinaProject (201105) supported by Scholarship Award for Excellent Doctoral Student,Ministry of Education, China
文摘The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-situ stresses, uniaxial compressive strength and tensile strength of rock, and the elastic energy index of rock, were selected in the analysis. The traditional indicators were summarized and divided into indexes I and 1I. Random Forest model and criterion were obtained through training 36 sets of rockburst samples which come from underground rock projects in domestic and abroad. Another 10 samples were tested and evaluated with the model. The evaluated results agree well with the practical records. Comparing the results of support vector machine (SVM) method, and artificial neural network (ANN) method with random forest method, the corresponding misjudgment ratios are 10%, 20%, and 0, respectively. The misjudgment ratio using index I is smaller than that using index II. It is suggested that using the index I and RF model can accurately classify rockburst grade.
基金The National High Technology Research and Development Program of China(863 Program)(No.2012AA112304)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ13-0119)
文摘In order to avoid the noise and over fitting and further improve the limited classification performance of the real decision tree, a traffic incident detection method based on the random forest algorithm is presented. From the perspective of classification strength and correlation, three experiments are performed to investigate the potential application of random forest to traffic incident detection: comparison with a different number of decision trees; comparison with different decision trees; comparison with the neural network. The real traffic data of the 1-880 database is used in the experiments. The detection performance is evaluated by the common criteria including the detection rate, the false alarm rate, the mean time to detection, the classification rate and the area under the curve of the receiver operating characteristic (ROC). The experimental results indicate that the model based on random forest can improve the decision rate, reduce the testing time, and obtain a higher classification rate. Meanwhile, it is competitive compared with multi-layer feed forward neural networks (MLF).