In this paper,Edgeworth expansion for the nearest neighbor\|kernel estimate and random weighting approximation of conditional density are given and the consistency and convergence rate are proved.
In this paper we study the estimation of the regression function.We establish a law ofthe iterated logarithm for the random window-width kernel estimator and,as an application,fora nearest neighbor estimator.These res...In this paper we study the estimation of the regression function.We establish a law ofthe iterated logarithm for the random window-width kernel estimator and,as an application,fora nearest neighbor estimator.These results give sharp pointwise rates of strong consistency ofthese estimators.展开更多
Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate es...Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate estimation method, land managers might end up with incorrect biomass estimate maps, which could lead them to make poorer decisions in their future management plans. The goal of this study was to compare various imputation methods to predict forest biomass and basal area, at a project planning scale (a combination of ground inventory plots, light detection and ranging (LiDAR) data, satellite imagery, and climate data was analyzed, and their root mean square error (RMSE) and bias were calculated. Results indicate that for biomass prediction, the k-nn (k = 5) had the lowest RMSE and least amount of bias. The second most accurate method consisted of the k-nn (k = 3), followed by the GWR model, and the random forest imputation. For basal area prediction, the GWR model had the lowest RMSE and least amount of bias. The second most accurate method was k-nn (k = 5), followed by k-nn (k = 3), and the random forest method. For both metrics, the GNN method was the least accurate based on the ranking of RMSE and bias.展开更多
文摘In this paper,Edgeworth expansion for the nearest neighbor\|kernel estimate and random weighting approximation of conditional density are given and the consistency and convergence rate are proved.
文摘In this paper we study the estimation of the regression function.We establish a law ofthe iterated logarithm for the random window-width kernel estimator and,as an application,fora nearest neighbor estimator.These results give sharp pointwise rates of strong consistency ofthese estimators.
文摘Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate estimation method, land managers might end up with incorrect biomass estimate maps, which could lead them to make poorer decisions in their future management plans. The goal of this study was to compare various imputation methods to predict forest biomass and basal area, at a project planning scale (a combination of ground inventory plots, light detection and ranging (LiDAR) data, satellite imagery, and climate data was analyzed, and their root mean square error (RMSE) and bias were calculated. Results indicate that for biomass prediction, the k-nn (k = 5) had the lowest RMSE and least amount of bias. The second most accurate method consisted of the k-nn (k = 3), followed by the GWR model, and the random forest imputation. For basal area prediction, the GWR model had the lowest RMSE and least amount of bias. The second most accurate method was k-nn (k = 5), followed by k-nn (k = 3), and the random forest method. For both metrics, the GNN method was the least accurate based on the ranking of RMSE and bias.