期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On the Random Conjugate Spaces of a Random Locally Convex Module 被引量:3
1
作者 Tie Xin GUO Shi En ZHAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第4期687-696,共10页
Theoretically speaking, there are four kinds of possibilities to define the random conjugate space of a random locally convex module. The purpose of this paper is to prove that among the four kinds there are only two ... Theoretically speaking, there are four kinds of possibilities to define the random conjugate space of a random locally convex module. The purpose of this paper is to prove that among the four kinds there are only two which are universally suitable for the current development of the theory of random conjugate spaces. In this process, we also obtain a somewhat surprising and crucial result: if the base (Ω,F, P) of a random normed module is nonatomic then the random normed module is a totally disconnected topological space when it is endowed with the locally L0-convex topology. 展开更多
关键词 random locally convex module (ε λ)-topology locally L0-convex topology random con-jugate space
原文传递
Recent progress in random metric theory and its applications to conditional risk measures 被引量:18
2
作者 GUO TieXin 《Science China Mathematics》 SCIE 2011年第4期633-660,共28页
The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introductio... The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introduction,which gives a brief introduction to random metric theory,risk measures and conditional risk measures.Section 2 gives the central framework in random metric theory,topological structures,important examples,the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals.Section 3 gives several important representation theorems for random conjugate spaces.Section 4 gives characterizations for a complete random normed module to be random reflexive.Section 5 gives hyperplane separation theorems currently available in random locally convex modules.Section 6 gives the theory of random duality with respect to the locally L0-convex topology and in particular a characterization for a locally L0-convex module to be L0-pre-barreled.Section 7 gives some basic results on L0-convex analysis together with some applications to conditional risk measures.Finally,Section 8 is devoted to extensions of conditional convex risk measures,which shows that every representable L∞-type of conditional convex risk measure and every continuous Lp-type of convex conditional risk measure(1 ≤ p < +∞) can be extended to an L∞F(E)-type of σ,λ(L∞F(E),L1F(E))-lower semicontinuous conditional convex risk measure and an LpF(E)-type of T,λ-continuous conditional convex risk measure(1 ≤ p < +∞),respectively. 展开更多
关键词 random normed module random inner product module random locally convex module random conjugate space L0-convex analysis conditional risk measures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部