The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.Th...The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.展开更多
The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of th...The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of the Drude Model. The bi-directional reflection distribution function (BRDF) for both TM mode and TE mode were obtained and compared with the highly accurate experimental data from the earlier work. The incident wavelength varies from 1.152 μm to 3.392 μm and incident angle is at 300-70°, respectively. The results show that, the predicted values and experimental results are in good agreement. The highly specular peak in the BRDF is reproduced in the numerical simulations, and the increase of the TM mode BRDF is found to be attributed to the effect of a variation in the optical constant at the incident wavelength period.展开更多
In this work,we develop a stochastic gradient descent method for the computational optimal design of random rough surfaces in thin-film solar cells.We formulate the design problems as random PDE-constrained optimizati...In this work,we develop a stochastic gradient descent method for the computational optimal design of random rough surfaces in thin-film solar cells.We formulate the design problems as random PDE-constrained optimization problems and seek the optimal statistical parameters for the random surfaces.The optimizations at fixed frequency as well as at multiple frequencies and multiple incident angles are investigated.To evaluate the gradient of the objective function,we derive the shape derivatives for the interfaces and apply the adjoint state method to perform the computation.The stochastic gradient descent method evaluates the gradient of the objective function only at a few samples for each iteration,which reduces the computational cost significantly.Various numerical experiments are conducted to illustrate the efficiency of the method and significant increases of the absorptance for the optimal random structures.We also examine the convergence of the stochastic gradient descent algorithm theoretically and prove that the numerical method is convergent under certain assumptions for the random interfaces.展开更多
Stainless steel alloy SS-304 is widely used in many engineering applications primarily for its excellent corrosion resistance, ease of fabrication and aesthetic appeal. Many kitchen appliances are made from SS-304 all...Stainless steel alloy SS-304 is widely used in many engineering applications primarily for its excellent corrosion resistance, ease of fabrication and aesthetic appeal. Many kitchen appliances are made from SS-304 alloy because of its durability, ease of cleaning and beautiful finish. However, over the years of continuous usage and cleaning by detergent bar and abrasive clothes the initial brightness and shine of the plates and dishes undergo considerable degradation. In this work, we report the results of a thorough investigation of the physico-chemical characteristics of the surface regions of both new and old SS-304 plates of known history of continuous usage to identify the key physical and chemical factors that are responsible for the loss of shine. Several analytical techniques viz. SEM/EDX, AFM, XPS, XRD, Reflectance FTIR, Profilometry and Reflectance spectrometry in the visible region have been used for experimental investigation of surface structure, morphology, roughness profile, chemical composition and appearance measurements of several steel samples. In addition, glossmeter has been used to measure the gloss of the samples at certain specific angles. It seems that surface roughness is one of the key physical parameters that play an important role in the reduction of brightness and shine. The other parameter is the presence of a thin surface film on the steel surface. In order to analyze the experimental data and to predict the shine and brightness phenomena quantitatively, we have used Fresnel’s theory to compute first the reflectance from each component of SS-304 alloy assuming it to be a smooth surface and then extended it to compute the reflectance of the alloy surface (SS-304). In order to interpret the reflectance from old and used plates, we have further used Beckmann’s theory of light scattering from random rough surface to analyze and predict the appearance aspects of the alloy surface quantitatively. Both the experimental and computed results show good agreement, thus validating the reflectance model used for computing the reflectance from SS-304 alloy surface and the appropriateness of Beckmann’s model of random rough surface.展开更多
An analytic expression of the two-frequency mutual coherence function (MCF) was derived for a two-dimensional random rough surface. The scattered field was cal-culated by the Kirchhoff approximation, which is valid in...An analytic expression of the two-frequency mutual coherence function (MCF) was derived for a two-dimensional random rough surface. The scattered field was cal-culated by the Kirchhoff approximation, which is valid in the case that the radius of curvature of the surface is much larger than the incident wave length. The scatter-ing problem of narrowband pulse was investigated to simplify the analytic expres-sion of the two-frequency MCF. Numerical simulations show that the two-frequency MCF is greatly dependent on the root-mean-square (RMS) height, while less de-pendent on the correlation length. The analytic solutions were compared with the results of Monte Carlo simulation to assess the accuracy and computational efficiency.展开更多
基金Project(2009AA05Z215) supported by the National High-Tech Research and Development Program of China
文摘The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.
基金Project(N110204015) supported by the Fundamental Research Funds for the Central Universities
文摘The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of the Drude Model. The bi-directional reflection distribution function (BRDF) for both TM mode and TE mode were obtained and compared with the highly accurate experimental data from the earlier work. The incident wavelength varies from 1.152 μm to 3.392 μm and incident angle is at 300-70°, respectively. The results show that, the predicted values and experimental results are in good agreement. The highly specular peak in the BRDF is reproduced in the numerical simulations, and the increase of the TM mode BRDF is found to be attributed to the effect of a variation in the optical constant at the incident wavelength period.
基金partially supported by the DOE grant DE-SC0022253the work of JL was partially supported by the NSF grant DMS-1719851 and DMS-2011148.
文摘In this work,we develop a stochastic gradient descent method for the computational optimal design of random rough surfaces in thin-film solar cells.We formulate the design problems as random PDE-constrained optimization problems and seek the optimal statistical parameters for the random surfaces.The optimizations at fixed frequency as well as at multiple frequencies and multiple incident angles are investigated.To evaluate the gradient of the objective function,we derive the shape derivatives for the interfaces and apply the adjoint state method to perform the computation.The stochastic gradient descent method evaluates the gradient of the objective function only at a few samples for each iteration,which reduces the computational cost significantly.Various numerical experiments are conducted to illustrate the efficiency of the method and significant increases of the absorptance for the optimal random structures.We also examine the convergence of the stochastic gradient descent algorithm theoretically and prove that the numerical method is convergent under certain assumptions for the random interfaces.
文摘Stainless steel alloy SS-304 is widely used in many engineering applications primarily for its excellent corrosion resistance, ease of fabrication and aesthetic appeal. Many kitchen appliances are made from SS-304 alloy because of its durability, ease of cleaning and beautiful finish. However, over the years of continuous usage and cleaning by detergent bar and abrasive clothes the initial brightness and shine of the plates and dishes undergo considerable degradation. In this work, we report the results of a thorough investigation of the physico-chemical characteristics of the surface regions of both new and old SS-304 plates of known history of continuous usage to identify the key physical and chemical factors that are responsible for the loss of shine. Several analytical techniques viz. SEM/EDX, AFM, XPS, XRD, Reflectance FTIR, Profilometry and Reflectance spectrometry in the visible region have been used for experimental investigation of surface structure, morphology, roughness profile, chemical composition and appearance measurements of several steel samples. In addition, glossmeter has been used to measure the gloss of the samples at certain specific angles. It seems that surface roughness is one of the key physical parameters that play an important role in the reduction of brightness and shine. The other parameter is the presence of a thin surface film on the steel surface. In order to analyze the experimental data and to predict the shine and brightness phenomena quantitatively, we have used Fresnel’s theory to compute first the reflectance from each component of SS-304 alloy assuming it to be a smooth surface and then extended it to compute the reflectance of the alloy surface (SS-304). In order to interpret the reflectance from old and used plates, we have further used Beckmann’s theory of light scattering from random rough surface to analyze and predict the appearance aspects of the alloy surface quantitatively. Both the experimental and computed results show good agreement, thus validating the reflectance model used for computing the reflectance from SS-304 alloy surface and the appropriateness of Beckmann’s model of random rough surface.
基金the National Natural Science Foundation of China (Grant No. 60571058)the National Defense Foundation of China (Grant No. 51403020505DZ0111)
文摘An analytic expression of the two-frequency mutual coherence function (MCF) was derived for a two-dimensional random rough surface. The scattered field was cal-culated by the Kirchhoff approximation, which is valid in the case that the radius of curvature of the surface is much larger than the incident wave length. The scatter-ing problem of narrowband pulse was investigated to simplify the analytic expres-sion of the two-frequency MCF. Numerical simulations show that the two-frequency MCF is greatly dependent on the root-mean-square (RMS) height, while less de-pendent on the correlation length. The analytic solutions were compared with the results of Monte Carlo simulation to assess the accuracy and computational efficiency.