期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Random vibration analysis of FGM plates subjected to moving load using a refined stochastic finite element method
1
作者 Ngoc-Tu Do Trung Thanh Tran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期42-56,共15页
The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte C... The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte Carlo simulation(MCS), so-called refined stochastic finite element method to investigate the random vibration of functionally graded material(FGM) plates subjected to the moving load.The advantage of the proposed method is to use r-FSDT to improve the accuracy of classical FSDT, satisfy the stress-free condition at the plate boundaries, and combine with MCS to analyze the vibration of the FGM plate when the parameter inputs are random quantities following a normal distribution. The obtained results show that the distribution characteristics of the vibration response of the FGM plate depend on the standard deviation of the input parameters and the velocity of the moving load.Furthermore, the numerical results in this study are expected to contribute to improving the understanding of FGM plates subjected to moving loads with uncertain input parameters. 展开更多
关键词 FGM Moving load R-FSDT Q4 element Monte Carlo simulation random vibration
下载PDF
Random vibration of hysteretic systems under Poisson white noise excitations
2
作者 Lincong CHEN Zi YUAN +1 位作者 Jiamin QIAN J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期207-220,共14页
Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non... Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non-Gaussian.In this paper,the radial basis function(RBF)neural network(RBF-NN)method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations.The solution to the reduced generalized Fokker-PlanckKolmogorov(GFPK)equation is expressed in terms of the RBF-NNs with the Gaussian activation functions,whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition.A steel fiber reinforced ceramsite concrete(SFRCC)column loaded by the Poisson white noise is studied as an example to illustrate the solution process.The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated,and the obtained results are compared with those obtained by the Monte Carlo simulations(MCSs).The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency. 展开更多
关键词 random vibration Bouc-Wen hysteresis system non-Gaussian excitation Poisson white noise excitation radial basis function(RBF)neural network(RBF-NN)
下载PDF
Seismic safety assessment with non-Gaussian random processes for train-bridge coupled systems
3
作者 Zhao Han Gao Lei +4 位作者 Wei Biao Tan Jincheng Guo Peidong Jiang Lizhong Xiang Ping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期241-260,共20页
Extensive high-speed railway(HSR)network resembled the intricate vascular system of the human body,crisscrossing mainlands.Seismic events,known for their unpredictability,pose a significant threat to both trains and b... Extensive high-speed railway(HSR)network resembled the intricate vascular system of the human body,crisscrossing mainlands.Seismic events,known for their unpredictability,pose a significant threat to both trains and bridges,given the HSR’s extended operational duration.Therefore,ensuring the running safety of train-bridge coupled(TBC)system,primarily composed of simply supported beam bridges,is paramount.Traditional methods like the Monte Carlo method fall short in analyzing this intricate system efficiently.Instead,efficient algorithm like the new point estimate method combined with moment expansion approximation(NPEM-MEA)is applied to study random responses of numerical simulation TBC systems.Validation of the NPEM-MEA’s feasibility is conducted using the Monte Carlo method.Comparative analysis confirms the accuracy and efficiency of the method,with a recommended truncation order of four to six for the NPEM-MEA.Additionally,the influences of seismic magnitude and epicentral distance are discussed based on the random dynamic responses in the TBC system.This methodology not only facilitates seismic safety assessments for TBC systems but also contributes to standard-setting for these systems under earthquake conditions. 展开更多
关键词 train-bridge coupled(TBC)system random vibration new point estimate method(NPEM) seismic safety assessment moment expansion approximation(MEA) non-Gaussian distributions
下载PDF
Non-random vibration analysis for general viscous damping systems 被引量:1
4
作者 Chao JIANG Long LIU +1 位作者 Jinwu LI Bingyu NI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第12期2655-2666,共12页
The authors recently developed a kind of non-probabilistic analysis method, named as‘non-random vibration analysis’, to deal with the important random vibration problems, in which the excitation and response are bot... The authors recently developed a kind of non-probabilistic analysis method, named as‘non-random vibration analysis’, to deal with the important random vibration problems, in which the excitation and response are both given in the form of interval process rather than stochastic process. Since it has some attractive advantages such as easy to understand, convenient to use and small dependence on samples, the non-random vibration analysis method is expected to be an effective supplement of the traditional random vibration theory. In this paper, we further extend the nonrandom vibration analysis into the general viscous damping system, and formulate a method to calculate the dynamic response bounds of a viscous damping vibration system under uncertain excitations. Firstly, the unit impulse response matrix of the system is obtained by using a complex mode superposition method. Secondly, an analytic formulation of the system dynamic response middle point and radius under uncertain excitations is derived based on the Duhamel’s integral, and thus the upper and lower response bounds of the system can be obtained. Finally, two numerical examples are investigated to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Complex mode Dynamic response bounds Interval process random vibration Viscous damping system
原文传递
Performance improvement of the stochastic-resonance-based tri-stableenergy harvester under random rotational vibration 被引量:1
5
作者 Tingting Zhang Yanfei Jin Yanxia Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第5期326-331,共6页
In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standa... In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered.The stationary probability density function(SPDF)of the harvester is obtained by the improved stochastic averaging.Then,with the adiabatic approximation theory,the analytical expression of signal-to-noise ratio(SNR)for the TEH is deduced to characterize stochastic resonance(SR).To enhance direct current(DC)power delivery from a rotational TEH,the influences of system parameters on SR is discussed.The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system.The TEH has higher harvesting performance under the optimal SR.That is,the optimal parameter combinations can induce optimal SR and maximize harvesting performance.Thus,the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter. 展开更多
关键词 Tri-stable energy harvesting Stochastic resonance random rotational vibration Signal-to-noise ratio
下载PDF
Numerical optimisation of a classical stochastic system for targeted energy transfer
6
作者 Oleg Gaidai Yubin Gu +2 位作者 Yihan Xing Junlei Wang Daniil Yurchenko 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第3期170-176,共7页
The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mas... The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mass is subjected to a zero-mean Gaussian white noise excitation,the main objective of this study is to maximise the efficiency of the targeted energy transfer in the system.A surrogate optimisation algorithm is proposed for this purpose and adopted for the stochastic framework.The optimisations are conducted separately for the nonlinear stiffness coefficient alone as well as for both the nonlinear stiffness and damping coefficients together.Three different optimisation cost functions,based on either energy of the system’s components or the dissipated energy,are considered.The results demonstrate some clear trends in values of the nonlinear energy sink coefficients and show the effect of different cost functions on the optimal values of the nonlinear system’s coefficients. 展开更多
关键词 Targeted energy transfer Surrogate optimisation Stochastic system random vibration
下载PDF
EXTRACTING MODAL PARAMETERS FROM STRUCTURES UNDERGOING AMBIENT EXCITATION
7
作者 华宏星 陈之炎 +2 位作者 傅志方 李中付 宋汉文 《Journal of Shanghai Jiaotong university(Science)》 EI 2001年第2期117-122,共6页
On Line Parameter Identification Technique (OLPIT) was presented according to ambient excitation characteristics and the response cross-correlation function that is a sum of decaying sinusoids of the same form as the ... On Line Parameter Identification Technique (OLPIT) was presented according to ambient excitation characteristics and the response cross-correlation function that is a sum of decaying sinusoids of the same form as the impulse response function of the original system. OLPIT is a new method of identification modal parameters from response of structures under ambient excitation. OLPIT is different from NExT (natural excitation technique) based on ITD method in four aspects: ① The algorithm is improved by the singular-value decomposition (SVD). ② Multi-value of b r in the Ibrahim Time Domain (ITD) is avoided. ③ OLPIT is used in both SIMO (single input, multi-output) and MIMO (multi input, multi-output). ④ The precision of modal parameter identificatioin is improved. The simulation studies demonstrate that the method is effective in identifying complex modes even with close frequencies and is robust to measurement noise. 展开更多
关键词 ambient excitation modal analysis parameter identification random vibration
下载PDF
Frequency Domain Fatigue Evaluation on SCR Girth-Weld Based on Structural Stress
8
作者 ZHANG Long ZHAO Tian-feng 《China Ocean Engineering》 SCIE EI 2024年第2期255-270,共16页
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t... The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR. 展开更多
关键词 SCR girth weld random vibration self(cross)power spectrum structural stress method biaxial fatigue damage
下载PDF
Dynamics response analysis of airborne external storage system with clearance between missile-frame 被引量:1
9
作者 Yongfeng YANG Qingyang ZHENG +2 位作者 Jianjun WANG Zhongfu MA Xiangqiu LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3278-3287,共10页
Considering the aircraft and its external components are subjected to complex and variable aerodynamic loads during the working process,the missile-frame clearance system of the airborne external missile is investigat... Considering the aircraft and its external components are subjected to complex and variable aerodynamic loads during the working process,the missile-frame clearance system of the airborne external missile is investigated.The random vibration characteristics of the airborne external components are analyzed by finite element method.The finite element model is optimized with reference to the test results,and the effects of different clearance on the dynamic response of the missile-frame system are compared.The result shows that the frequency response curves of the same position and the resonant peak frequencies are consistent under different clearances.The acceleration response at both ends of the missile is large and the amplitude near the center of mass is gentle.The results can be used to predict reasonable missile-frame clearance and make guidance to the structural design and reliability analysis of the missile-frame system. 展开更多
关键词 AIRBORNE Dynamic response Finite element method(FEM) Missile-frame random vibration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部