The traditional Range Doppler(RD)algorithm is unable to meet practical needs owing to the limit of resolution.The order of fractional Fourier Transform(FrFT)and the length of sampling signals affect SAR imaging perfor...The traditional Range Doppler(RD)algorithm is unable to meet practical needs owing to the limit of resolution.The order of fractional Fourier Transform(FrFT)and the length of sampling signals affect SAR imaging performance when FrFT is applied to RD algorithm.To overcome the above shortcomings,the purpose of this paper is to propose a high-resolution SAR image algorithm by using the optimal order of FrFT and the sample length constraints for the range direction.The expression of the optimal order of SAR range signals via FrFT is deduced in detail.The initial sample length and its constraints are proposed to obtain the best sample length of SAR range signals.Experimental results demonstrate that,when the range sampling-length changes in a certain interval,the best sampling-length will be obtained,which the best values of the range resolution,PSLR and ISLR,will be derived respectively.Compared with traditional RD algorithm,the main-lobe width of the peak-point target of the proposed algorithm is narrow in the range direction.While the peak amplitude of the first side-lobe is reduced significantly,those of other side-lobes also drop in various degrees.展开更多
With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important fo...With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important for the ISAR to rescale the images.That is,the ISAR image which is in the range-Doppler domain is converted into the range-azimuth domain.Actually,the key point to solving the problem is to estimate the rotation parameters.In this paper,a new scheme to rescale the images is proposed.For the sake of solving the problem of two-dimensional image blur and target high-speed,the instantaneous range instantaneous Doppler(IRID)method is used to obtain ISAR images,and the rotation parameters are estimated by comparing the rotation correlation of the two images.Using this method,the error of the estimated rotation parameters is greatly reduced,so that the target can be rescaled accurately.The simulation results verify the ef-fectiveness of the proposed algorithm.展开更多
Range Doppler velocities derived from the Envisat advanced synthetic aperture radar(ASAR) wide swath images are analyzed and assessed against the numerically simulated surface current fields derived from the finite ...Range Doppler velocities derived from the Envisat advanced synthetic aperture radar(ASAR) wide swath images are analyzed and assessed against the numerically simulated surface current fields derived from the finite volume coastal ocean model(FVCOM) for the Changjiang Estuary. Comparisons with the FVCOM simulations show that the European Space Agency(ESA) Envisat ASAR based Doppler shift anomaly retrievals have the capability to capture quantitative information of the surface currents in the Changjiang Estuary. The uncertainty analysis of the ASAR range Doppler velocity estimates are discussed with regard to the azimuthal and range bias corrections, radar incidence angles, inaccuracy in the wind field corrections and the presence of rain cells.The corrected range Doppler velocities for the Changjiang Estuary area are highly valuable as they exhibit quantitative expressions related to the multiscale upper layer dynamics and surface current variability around the East China Sea, including the Changjiang Estuary.展开更多
The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper in...The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper indicates the feasibility of Bistatic Forward-Looking (BFL) SAR imaging. Considering the different Doppler property determined by the two platforms in BFL SAR, a new 2-D point target spectrum is derived in our study. Based on the spectrum, an imaging method is chosen for the configuration, and the point target simulation validates the analysis.展开更多
To address the low-resolution imaging problem in relation to traditional Range Doppler(RD)algorithm,this paper intends to propose a new algorithm based on Fractional Fourier Transform(FrFT),which proves highly advanta...To address the low-resolution imaging problem in relation to traditional Range Doppler(RD)algorithm,this paper intends to propose a new algorithm based on Fractional Fourier Transform(FrFT),which proves highly advantageous in the acquisition of high-resolution Synthetic Aperture Radar(SAR)images.The expression of the optimal order of SAR range signals using FrFT is deduced in detail,and the corresponding expression of the azimuth signal is also given.Theoretical analysis shows that,the optimal order in range(azimuth)direction,which turns out to be very unique,depends on the known imaging parameters of SAR,therefore the engineering practicability of FrFT-RD algorithm can be greatly improved without the need of order iteration.The FrFT-RD algorithm is established after an analysis of the optimal time-frequency transform.Experimental results demonstrate that,compared with traditional RD algorithm,the main-lobe width of the peak-point target of FrFT-RD algorithm is narrow in both range and azimuth directions.While the peak amplitude of the first side-lobe is reduced significantly,those of other side-lobes also drop in various degrees.In this way,the imaging resolution of range and azimuth can be increased considerably.展开更多
基金This work is supported by the 13th Five-Year Plan for Jiangsu Education Science(D/2020/01/22)JSPIGKZ and Natural Science Research Projects of Colleges and Universities in Jiangsu Province(19KJB510022)。
文摘The traditional Range Doppler(RD)algorithm is unable to meet practical needs owing to the limit of resolution.The order of fractional Fourier Transform(FrFT)and the length of sampling signals affect SAR imaging performance when FrFT is applied to RD algorithm.To overcome the above shortcomings,the purpose of this paper is to propose a high-resolution SAR image algorithm by using the optimal order of FrFT and the sample length constraints for the range direction.The expression of the optimal order of SAR range signals via FrFT is deduced in detail.The initial sample length and its constraints are proposed to obtain the best sample length of SAR range signals.Experimental results demonstrate that,when the range sampling-length changes in a certain interval,the best sampling-length will be obtained,which the best values of the range resolution,PSLR and ISLR,will be derived respectively.Compared with traditional RD algorithm,the main-lobe width of the peak-point target of the proposed algorithm is narrow in the range direction.While the peak amplitude of the first side-lobe is reduced significantly,those of other side-lobes also drop in various degrees.
基金supported in part by the National Natural Sci-ence Foundation of China(No.61875070)in part by the Science and Technology Development Plan of Jilin Province(No.20180201032GX)+1 种基金in part by the Science and Techno-logy Project of Education Department of Jilin Province(No.JJKH20190110KJ)in part by the Graduate In-novation Fund of Jilin University(No.101832020CX171).
文摘With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important for the ISAR to rescale the images.That is,the ISAR image which is in the range-Doppler domain is converted into the range-azimuth domain.Actually,the key point to solving the problem is to estimate the rotation parameters.In this paper,a new scheme to rescale the images is proposed.For the sake of solving the problem of two-dimensional image blur and target high-speed,the instantaneous range instantaneous Doppler(IRID)method is used to obtain ISAR images,and the rotation parameters are estimated by comparing the rotation correlation of the two images.Using this method,the error of the estimated rotation parameters is greatly reduced,so that the target can be rescaled accurately.The simulation results verify the ef-fectiveness of the proposed algorithm.
基金The National Basic Research Program(973 Program)of China under contract No.2010CB951204European Space Agency-Ministry of Science and Technology of the People’s Republic of China Dragon 3 Cooperation Programme under contract No.10593+1 种基金the State Key Laboratory of Estuarine and Coastal Research,East China Normal University of China under contract No.SKLEC-2012KYYW02the 111 Project under contract No.B08022
文摘Range Doppler velocities derived from the Envisat advanced synthetic aperture radar(ASAR) wide swath images are analyzed and assessed against the numerically simulated surface current fields derived from the finite volume coastal ocean model(FVCOM) for the Changjiang Estuary. Comparisons with the FVCOM simulations show that the European Space Agency(ESA) Envisat ASAR based Doppler shift anomaly retrievals have the capability to capture quantitative information of the surface currents in the Changjiang Estuary. The uncertainty analysis of the ASAR range Doppler velocity estimates are discussed with regard to the azimuthal and range bias corrections, radar incidence angles, inaccuracy in the wind field corrections and the presence of rain cells.The corrected range Doppler velocities for the Changjiang Estuary area are highly valuable as they exhibit quantitative expressions related to the multiscale upper layer dynamics and surface current variability around the East China Sea, including the Changjiang Estuary.
基金Supported by the National Natural Science Foundation of China (No. 61071165)the Aviation Science Foundation (No. 20102052024)
文摘The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper indicates the feasibility of Bistatic Forward-Looking (BFL) SAR imaging. Considering the different Doppler property determined by the two platforms in BFL SAR, a new 2-D point target spectrum is derived in our study. Based on the spectrum, an imaging method is chosen for the configuration, and the point target simulation validates the analysis.
基金supported by the 13th Five-Year Plan for Jiangsu Education Science(D/2020/01/22)JSPIGKZ(JSPI19GKZL405)Natural Science Research Projects of Colleges and Universities in Jiangsu Province(19KJB510022).
文摘To address the low-resolution imaging problem in relation to traditional Range Doppler(RD)algorithm,this paper intends to propose a new algorithm based on Fractional Fourier Transform(FrFT),which proves highly advantageous in the acquisition of high-resolution Synthetic Aperture Radar(SAR)images.The expression of the optimal order of SAR range signals using FrFT is deduced in detail,and the corresponding expression of the azimuth signal is also given.Theoretical analysis shows that,the optimal order in range(azimuth)direction,which turns out to be very unique,depends on the known imaging parameters of SAR,therefore the engineering practicability of FrFT-RD algorithm can be greatly improved without the need of order iteration.The FrFT-RD algorithm is established after an analysis of the optimal time-frequency transform.Experimental results demonstrate that,compared with traditional RD algorithm,the main-lobe width of the peak-point target of FrFT-RD algorithm is narrow in both range and azimuth directions.While the peak amplitude of the first side-lobe is reduced significantly,those of other side-lobes also drop in various degrees.In this way,the imaging resolution of range and azimuth can be increased considerably.