A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the ...A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the procedure are fully discussed. Firstly, unlike image formation algorithms operating in the frequency domain, a time domain algorithm requires the accurate global navigation satellite system (GNSS) time and position. This paper proposes acquisition of this information using a time-and-spatial transfer with precise ephemeris and interpolation. Secondly, synchronization errors and compensation methods in SS-BSAR are analyzed. Finally, taking the non-ideal factors in the echo and the compatibility of image formation algorithms into account, a matched filter based on the minimum delay is constructed. Experimental result using real data suggest the pre-processing is functioning properly.展开更多
This paper studies two range-Doppler (RD) algorithms for the azimuth correlation in the squint mode airborne synthetic aperture radar (SAR). The modeling of squint mode airborne SAR spatial geometry and echo response ...This paper studies two range-Doppler (RD) algorithms for the azimuth correlation in the squint mode airborne synthetic aperture radar (SAR). The modeling of squint mode airborne SAR spatial geometry and echo response is given. The procedure for the squint mode airborne SAR processing using the two RD algorithms is outlined. The simulation demonstrates that these two RD algorithms are suitable for squint mode airborne SAR when the squint angle is not larger than 20(°).展开更多
The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed ...The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed and confining pressure state is regarded as low/medium/high state. A generalized cup modeling is introduced by a coupled deviatoric shearing, pore collapse and damage mechanism within thermodynamic framework. A series of numerical simulations are performed for the considered cement paste and concrete. Comparisons between numerical predictions and experimental results show that the proposed model is able to describe the main features of mechanical behavior under large range of compression state.展开更多
基金supported by the Electro-Magnetic Remote Sensing Defence Technology Centre (EMRS-DTC) of the UK Ministry of Defence(EMRS/DTC/1/27)the China Scholarship Council (2009611064)the Program for New Century Excellent Talents in University (NCET-07-0223)
文摘A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the procedure are fully discussed. Firstly, unlike image formation algorithms operating in the frequency domain, a time domain algorithm requires the accurate global navigation satellite system (GNSS) time and position. This paper proposes acquisition of this information using a time-and-spatial transfer with precise ephemeris and interpolation. Secondly, synchronization errors and compensation methods in SS-BSAR are analyzed. Finally, taking the non-ideal factors in the echo and the compatibility of image formation algorithms into account, a matched filter based on the minimum delay is constructed. Experimental result using real data suggest the pre-processing is functioning properly.
文摘This paper studies two range-Doppler (RD) algorithms for the azimuth correlation in the squint mode airborne synthetic aperture radar (SAR). The modeling of squint mode airborne SAR spatial geometry and echo response is given. The procedure for the squint mode airborne SAR processing using the two RD algorithms is outlined. The simulation demonstrates that these two RD algorithms are suitable for squint mode airborne SAR when the squint angle is not larger than 20(°).
基金supported by One Thousand Talents Scheme of China, the National Natural Science Foundation of China(No. 50808066)the Fundamental Research Funds for the Central Universities of China (No. 2009B14814)
文摘The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed and confining pressure state is regarded as low/medium/high state. A generalized cup modeling is introduced by a coupled deviatoric shearing, pore collapse and damage mechanism within thermodynamic framework. A series of numerical simulations are performed for the considered cement paste and concrete. Comparisons between numerical predictions and experimental results show that the proposed model is able to describe the main features of mechanical behavior under large range of compression state.