Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is first...Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is firstly used to locate the four corners of the image, then the other pixels of the image can be located by Reverse-Range-Doppler (RRD) method. Resampling is performed at last. The approach has an advantage over previous techniques in that it does not require ground control points and is independent of spacecraft attitude knowledge or control. It can compensate the shift due to the assumed Doppler frequency in SAR image preprocessing. RRD simplifies the process of RD, therefore speeds up the computation. The experimental results show that a SAR image can be automated geocoded in 30 s using the single CPU (3 GHz) with 1 G memory and an accuracy of 10 m is attainable with this method.展开更多
An algorithm was developed to accurately estimate the Doppler centroid,which is needed for high-quality synthetic aperture radar(SAR)image formation by resolving the SAR pulse repetition frequency(PRF)ambiguity.The al...An algorithm was developed to accurately estimate the Doppler centroid,which is needed for high-quality synthetic aperture radar(SAR)image formation by resolving the SAR pulse repetition frequency(PRF)ambiguity.The algorithm uses the SAR range migration to resolve the PRF-ambiguity by searching for a PRF-ambiguity number that minimizes the intensity contrast in the range-Doppler domain.Experimental results show that the approach,compared with traditional methods for resolving the SAR PRF ambiguity,is more suitable for both high contrast scenes such as urban areas and low contrast scenes such as mountains.Moreover,the approach is more computationally efficient for there are no time-consuming correlations or fast Fourier transform(FFT)operations needed in the range-Doppler domain and only part of the range cells are used in the calculation.展开更多
In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar...In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.展开更多
This paper studies two range-Doppler (RD) algorithms for the azimuth correlation in the squint mode airborne synthetic aperture radar (SAR). The modeling of squint mode airborne SAR spatial geometry and echo response ...This paper studies two range-Doppler (RD) algorithms for the azimuth correlation in the squint mode airborne synthetic aperture radar (SAR). The modeling of squint mode airborne SAR spatial geometry and echo response is given. The procedure for the squint mode airborne SAR processing using the two RD algorithms is outlined. The simulation demonstrates that these two RD algorithms are suitable for squint mode airborne SAR when the squint angle is not larger than 20(°).展开更多
Target recognition is a significant part of a Ballistic Missile Defense System(BMDS).However,most existing ballistic target recognition methods overlook the impact of data representation on recognition outcomes.This p...Target recognition is a significant part of a Ballistic Missile Defense System(BMDS).However,most existing ballistic target recognition methods overlook the impact of data representation on recognition outcomes.This paper focuses on systematically investigating the influences of three novel data representations in the Range-Doppler(RD)domain.Initially,the Radar Cross Section(RCS)and micro-Doppler(m-D)characteristics of a cone-shaped ballistic target are analyzed.Then,three different data representations are proposed:RD data,RD sequence tensor data,and RD trajectory data.To accommodate various data inputs,deep-learning models are designed,including a two-Dimensional Residual Dense Network(2D RDN),a three-Dimensional Residual Dense Network-Gated Recurrent Unit(3D RDN-GRU),and a Dynamic Trajectory Recognition Network(DTRN).Finally,an Electromagnetic(EM)computation dataset is collected to verify the performances of the networks.A broad range of experimental results demonstrates the effectiveness of the proposed framework.Moreover,several key parameters of the proposed networks and datasets are extensively studied in this research.展开更多
A concept of space-surface bistatic synthetic aperture radar (SS-BSAR) passive imaging system is proposed,which is parasitic on the signal of COMPASS Navigation Satellite System (CNSS).The feasibility is demonstrated ...A concept of space-surface bistatic synthetic aperture radar (SS-BSAR) passive imaging system is proposed,which is parasitic on the signal of COMPASS Navigation Satellite System (CNSS).The feasibility is demonstrated by analyzing the signal ambiguity function and the range resolution as well as the system topology.Due to the multiple peaks of signal in the auto-correlation function,a new correlation is used to remove the side-peaks.A double-channel receiver is employed to receive the direct satellite signal and the ground reflected signal.The direct signal is a reference signal in range compression,and may also be used for transmitter-receiver signal synchronization.The reflected signal is raw data collected for imaging.Then,a modified range-Doppler imaging algorithm is derived based on the system geometric models and BSAR imaging principle.The proposed algorithm is verified via signal simulation.The work in this paper is of great value to the further use of COMPASS signal,as well as other global navigation satellite signals in passive imaging.展开更多
A method, called class multiple signal classification (CMUSIC), is proposed to estimate high-resolution radial velocity in each pulse train (subband, i.e. narrowband) with M pulses based on stepped frequency pulse...A method, called class multiple signal classification (CMUSIC), is proposed to estimate high-resolution radial velocity in each pulse train (subband, i.e. narrowband) with M pulses based on stepped frequency pulse trains (SFPTs) signal. A synthetic ultra-wideband (UWB) high-resolution range profile (HRRP) is then obtained by fast Fourier transform (FFT) processing along the subbands after compensating the range-Doppler coupling and Doppler dispersion with the estimated velocity. Compared with the other methods, CMUSIC has fine performance of velocity estimation at low signal-to-noise ratio (SNR) level. This method also has excellent performance with small Mas long as the requirement, i.e. Mis large than Q, is able to be fulfilled, where Q is the number of targets with different radial velocities. In addition, through a radial velocity resolving, the method can be well suitable for targets moving at high radial velocities, which has significant practical value with considerable progress made in the national defence technology and the advanced vehicles moving at high speed springing up. Simulation results demonstrate the feasibility and effectiveness of the method.展开更多
In this study,we provide a detailed analysis of the frequency division duplex long term evolution downlink(FDD LTE DL)signal for passive bistatic radars that use the signal as an illuminator of opportunity.In particul...In this study,we provide a detailed analysis of the frequency division duplex long term evolution downlink(FDD LTE DL)signal for passive bistatic radars that use the signal as an illuminator of opportunity.In particular,we analyze the crossambiguity function and illustrate its undesired deterministic peaks in the Doppler dimension due to the specific structure of the FDD LTE DL signal.A new adaptive mismatched filtering method is proposed for pre-processing the original reference signal to suppress these undesired deterministic peaks in the range-Doppler processing.The effectiveness of our proposed method is demonstrated via simulations following robustness analysis,showing that all undesired peaks are suppressed below-40 dB,with only 1.7 dB reduction in the main peak.展开更多
文摘Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is firstly used to locate the four corners of the image, then the other pixels of the image can be located by Reverse-Range-Doppler (RRD) method. Resampling is performed at last. The approach has an advantage over previous techniques in that it does not require ground control points and is independent of spacecraft attitude knowledge or control. It can compensate the shift due to the assumed Doppler frequency in SAR image preprocessing. RRD simplifies the process of RD, therefore speeds up the computation. The experimental results show that a SAR image can be automated geocoded in 30 s using the single CPU (3 GHz) with 1 G memory and an accuracy of 10 m is attainable with this method.
基金supported by the China National Ministry (No.J01-2005078)the National Natural Science Foundation of China (Grant No.60502012).
文摘An algorithm was developed to accurately estimate the Doppler centroid,which is needed for high-quality synthetic aperture radar(SAR)image formation by resolving the SAR pulse repetition frequency(PRF)ambiguity.The algorithm uses the SAR range migration to resolve the PRF-ambiguity by searching for a PRF-ambiguity number that minimizes the intensity contrast in the range-Doppler domain.Experimental results show that the approach,compared with traditional methods for resolving the SAR PRF ambiguity,is more suitable for both high contrast scenes such as urban areas and low contrast scenes such as mountains.Moreover,the approach is more computationally efficient for there are no time-consuming correlations or fast Fourier transform(FFT)operations needed in the range-Doppler domain and only part of the range cells are used in the calculation.
文摘In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.
文摘This paper studies two range-Doppler (RD) algorithms for the azimuth correlation in the squint mode airborne synthetic aperture radar (SAR). The modeling of squint mode airborne SAR spatial geometry and echo response is given. The procedure for the squint mode airborne SAR processing using the two RD algorithms is outlined. The simulation demonstrates that these two RD algorithms are suitable for squint mode airborne SAR when the squint angle is not larger than 20(°).
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JCYB-491).
文摘Target recognition is a significant part of a Ballistic Missile Defense System(BMDS).However,most existing ballistic target recognition methods overlook the impact of data representation on recognition outcomes.This paper focuses on systematically investigating the influences of three novel data representations in the Range-Doppler(RD)domain.Initially,the Radar Cross Section(RCS)and micro-Doppler(m-D)characteristics of a cone-shaped ballistic target are analyzed.Then,three different data representations are proposed:RD data,RD sequence tensor data,and RD trajectory data.To accommodate various data inputs,deep-learning models are designed,including a two-Dimensional Residual Dense Network(2D RDN),a three-Dimensional Residual Dense Network-Gated Recurrent Unit(3D RDN-GRU),and a Dynamic Trajectory Recognition Network(DTRN).Finally,an Electromagnetic(EM)computation dataset is collected to verify the performances of the networks.A broad range of experimental results demonstrates the effectiveness of the proposed framework.Moreover,several key parameters of the proposed networks and datasets are extensively studied in this research.
基金supported by the National Basic Research Program of China (Grant No.2011CB707001)
文摘A concept of space-surface bistatic synthetic aperture radar (SS-BSAR) passive imaging system is proposed,which is parasitic on the signal of COMPASS Navigation Satellite System (CNSS).The feasibility is demonstrated by analyzing the signal ambiguity function and the range resolution as well as the system topology.Due to the multiple peaks of signal in the auto-correlation function,a new correlation is used to remove the side-peaks.A double-channel receiver is employed to receive the direct satellite signal and the ground reflected signal.The direct signal is a reference signal in range compression,and may also be used for transmitter-receiver signal synchronization.The reflected signal is raw data collected for imaging.Then,a modified range-Doppler imaging algorithm is derived based on the system geometric models and BSAR imaging principle.The proposed algorithm is verified via signal simulation.The work in this paper is of great value to the further use of COMPASS signal,as well as other global navigation satellite signals in passive imaging.
文摘A method, called class multiple signal classification (CMUSIC), is proposed to estimate high-resolution radial velocity in each pulse train (subband, i.e. narrowband) with M pulses based on stepped frequency pulse trains (SFPTs) signal. A synthetic ultra-wideband (UWB) high-resolution range profile (HRRP) is then obtained by fast Fourier transform (FFT) processing along the subbands after compensating the range-Doppler coupling and Doppler dispersion with the estimated velocity. Compared with the other methods, CMUSIC has fine performance of velocity estimation at low signal-to-noise ratio (SNR) level. This method also has excellent performance with small Mas long as the requirement, i.e. Mis large than Q, is able to be fulfilled, where Q is the number of targets with different radial velocities. In addition, through a radial velocity resolving, the method can be well suitable for targets moving at high radial velocities, which has significant practical value with considerable progress made in the national defence technology and the advanced vehicles moving at high speed springing up. Simulation results demonstrate the feasibility and effectiveness of the method.
基金Project supported by the National Key Laboratory Fund(No.6142411183302)。
文摘In this study,we provide a detailed analysis of the frequency division duplex long term evolution downlink(FDD LTE DL)signal for passive bistatic radars that use the signal as an illuminator of opportunity.In particular,we analyze the crossambiguity function and illustrate its undesired deterministic peaks in the Doppler dimension due to the specific structure of the FDD LTE DL signal.A new adaptive mismatched filtering method is proposed for pre-processing the original reference signal to suppress these undesired deterministic peaks in the range-Doppler processing.The effectiveness of our proposed method is demonstrated via simulations following robustness analysis,showing that all undesired peaks are suppressed below-40 dB,with only 1.7 dB reduction in the main peak.