As a new remote sensing technology, the global navigation satellite system(GNSS) reflection signals can be used to collect the information of ocean surface wind, surface roughness and sea surface height. Ocean altim...As a new remote sensing technology, the global navigation satellite system(GNSS) reflection signals can be used to collect the information of ocean surface wind, surface roughness and sea surface height. Ocean altimetry based on GNSS reflection technique is of low cost and it is easy to obtain large amounts of data thanks to the global navigation satellite constellation. We can estimate the sea surface height as well as the position of the specular reflection point. This paper focuses on the study of the algorithm to determine the specular reflection point and altimetry equations to estimate the sea surface height over the reflection region. We derive the error equation of sea surface height based on the error propagation theory. Effects of the Doppler shift and the size of the glistening zone on the altimetry are discussed and analyzed at the same time. Finally, we calculate the sea surface height based on the simulated GNSS data within the whole day and verify the sea surface height errors according to the satellite elevation angles. The results show that the sea surface height can reach the precision of 6 cm for elevation angles of 55° to 90°, and the theoretical error and the calculated error are in good agreement.展开更多
Today, the GNSS (global navigation satellite system) is used for more complicate and accurate applications such as monitoring or stake out works. The truth lies in the fact that in the most of the times not enough a...Today, the GNSS (global navigation satellite system) is used for more complicate and accurate applications such as monitoring or stake out works. The truth lies in the fact that in the most of the times not enough attention is paid to the antenna's setup. Usually, gross errors are found in the antenna's centering, leveling and in the measurement of its height, which are significant. In this paper, a thoroughly analysis of the above mentioned errors is carried out. The influence of these errors in the calculation of the X, Y, Z Cartesian geocentric coordinates and the ~, 2, h ellipsoid geodetic coordinates of a point P on the earth's surface, is analyzed and is presented in several diagrams. Also a new convenient method for the accurate measurement of the antenna's height is presented and it is strongly proposed. The conclusions outline the magnitude of these errors and prove the significance of the antenna's proper setup at the accurate GNSS applications.展开更多
This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μ_B(ballistic wind w_B,w_(xB),w_(ZB),ballistic(virtual) tem...This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μ_B(ballistic wind w_B,w_(xB),w_(ZB),ballistic(virtual) temperature τ_B.ballistic density p_B) from the standardized met messages.The weighting factors are used for the calculation of ballistic elements μ_B that are incorporated into the trajectory calculations characteristics of weapon and ammunition.Two different methodologies practically used in the praxis are analysed and compared.For the comparison of the two methodologies the reference height of trajectory determined from the weighting factor functions is employed.On the basis of the analyses conducted,the potential for further increase in accuracy of these aiming angles preparation methods is pointed out.展开更多
The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified...The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified and estimated in accordance with height differences at crossover points generated with nadir altimeters after excluding the interference from other error sources.Most of the wide-swath altimeter baseline estimation methods considered only the roll error in previous studies.A numerical simulation was conducted in this study using nadir altimeters to estimate the roll and length errors simultaneously to provide a selectable scheme for baseline error estimation and correction for future wide-swath altimeters.Results based on the parameters of the surface water and ocean topography mission and Sentinel-3A show that the correlation coefficient of the roll error between the estimated and simulated values is 0.89,while the correlation coefficient of the length error is 0.85.The sea surface height root mean square error(RMSE)can be reduced from 12.18 cm to 6.45 cm based on the two estimated results.The estimation effect can be increased by using multiple nadir altimeters to form an observation constellation.The numerical simulation of the five nadir altimeter constellation shows that the correlation coefficients of the roll and length errors would increase to 0.97,which reduces the sea surface height RMSE to 2.88 cm.In addition,the stability of this method is indicated in simulation experiments,which introduce different degrees of sea state errors.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.41374009)the Shandong Natural Science Foundation of China(Grant No.ZR2013DM009)+3 种基金the National Basic Research Program of China(973 ProgramGrant No.2013CB733302)the Public Benefit Scientific Research Project of China(Grant No.201412001)the SDUST Research Fund(Grant No.2014TDJH101)
文摘As a new remote sensing technology, the global navigation satellite system(GNSS) reflection signals can be used to collect the information of ocean surface wind, surface roughness and sea surface height. Ocean altimetry based on GNSS reflection technique is of low cost and it is easy to obtain large amounts of data thanks to the global navigation satellite constellation. We can estimate the sea surface height as well as the position of the specular reflection point. This paper focuses on the study of the algorithm to determine the specular reflection point and altimetry equations to estimate the sea surface height over the reflection region. We derive the error equation of sea surface height based on the error propagation theory. Effects of the Doppler shift and the size of the glistening zone on the altimetry are discussed and analyzed at the same time. Finally, we calculate the sea surface height based on the simulated GNSS data within the whole day and verify the sea surface height errors according to the satellite elevation angles. The results show that the sea surface height can reach the precision of 6 cm for elevation angles of 55° to 90°, and the theoretical error and the calculated error are in good agreement.
文摘Today, the GNSS (global navigation satellite system) is used for more complicate and accurate applications such as monitoring or stake out works. The truth lies in the fact that in the most of the times not enough attention is paid to the antenna's setup. Usually, gross errors are found in the antenna's centering, leveling and in the measurement of its height, which are significant. In this paper, a thoroughly analysis of the above mentioned errors is carried out. The influence of these errors in the calculation of the X, Y, Z Cartesian geocentric coordinates and the ~, 2, h ellipsoid geodetic coordinates of a point P on the earth's surface, is analyzed and is presented in several diagrams. Also a new convenient method for the accurate measurement of the antenna's height is presented and it is strongly proposed. The conclusions outline the magnitude of these errors and prove the significance of the antenna's proper setup at the accurate GNSS applications.
基金support of financial means from the industrial research project of the Ministry of the Interior of the Czech Republic-project code VG20122015076:"Two survey points range-finding system utilization for perimeter security(screen)"the Research project for the development of the Department of Weapons and Ammunition,Faculty of Military Technology, University of Defence,Brno,PRO K-201
文摘This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μ_B(ballistic wind w_B,w_(xB),w_(ZB),ballistic(virtual) temperature τ_B.ballistic density p_B) from the standardized met messages.The weighting factors are used for the calculation of ballistic elements μ_B that are incorporated into the trajectory calculations characteristics of weapon and ammunition.Two different methodologies practically used in the praxis are analysed and compared.For the comparison of the two methodologies the reference height of trajectory determined from the weighting factor functions is employed.On the basis of the analyses conducted,the potential for further increase in accuracy of these aiming angles preparation methods is pointed out.
基金the Shandong Provincial Natural Science Foundation(No.ZR2020MD097)the National Key Research and Development Program of China(No.2016YFC1401004)the National Natural Science Foundation of China(No.62031005)。
文摘The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified and estimated in accordance with height differences at crossover points generated with nadir altimeters after excluding the interference from other error sources.Most of the wide-swath altimeter baseline estimation methods considered only the roll error in previous studies.A numerical simulation was conducted in this study using nadir altimeters to estimate the roll and length errors simultaneously to provide a selectable scheme for baseline error estimation and correction for future wide-swath altimeters.Results based on the parameters of the surface water and ocean topography mission and Sentinel-3A show that the correlation coefficient of the roll error between the estimated and simulated values is 0.89,while the correlation coefficient of the length error is 0.85.The sea surface height root mean square error(RMSE)can be reduced from 12.18 cm to 6.45 cm based on the two estimated results.The estimation effect can be increased by using multiple nadir altimeters to form an observation constellation.The numerical simulation of the five nadir altimeter constellation shows that the correlation coefficients of the roll and length errors would increase to 0.97,which reduces the sea surface height RMSE to 2.88 cm.In addition,the stability of this method is indicated in simulation experiments,which introduce different degrees of sea state errors.