期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors
1
作者 Wei Zhai Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期1-13,共13页
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal... Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements. 展开更多
关键词 robust principal component analysis Sparse Matrix Low-rank Matrix Hyperspectral Image
下载PDF
变转速下L_(1,1,2)范数与张量核范数联合约束的TRPCA滚动轴承故障特征提取方法
2
作者 王冉 曹徐 +1 位作者 张军武 余亮 《振动与冲击》 EI CSCD 北大核心 2024年第7期84-93,共10页
滚动轴承作为旋转机械设备的重要部件之一,其工作状态直接影响旋转设备的运行安全,因此其故障特征的有效提取对于保障机械设备正常运行具有重要的意义。实际应用中滚动轴承通常以变化的速度运行,并且单一传感器采集的轴承的非平稳信号... 滚动轴承作为旋转机械设备的重要部件之一,其工作状态直接影响旋转设备的运行安全,因此其故障特征的有效提取对于保障机械设备正常运行具有重要的意义。实际应用中滚动轴承通常以变化的速度运行,并且单一传感器采集的轴承的非平稳信号往往被严重的背景噪声覆盖,使得故障特征的提取非常困难。为了解决这一问题,提出一种变转速下L_(1,1,2)范数与张量核范数联合约束的张量主成分分析(tensor robust principal component analysis,TRPCA)滚动轴承故障特征提取方法。首先,使用时频表示(time-frequency representation,TFR)作为正向切片构建张量,分别探讨滚动轴承时变故障特征在张量域中的管稀疏性和背景噪声在张量域中的低管秩性。进而使用L_(1,1,2)范数与张量核范数联合约束的TRPCA对故障特征张量进行提取,得到管稀疏的故障特征张量。最后将提取的故障特征张量在通道索引中进行融合,得到能够有效表征故障特征的时频表示。仿真和试验分析验证了该方法在轴承故障特征提取中的有效性。 展开更多
关键词 张量 故障特征提取 变转速工况 张量主成分分析(TRPCA) 管稀疏
下载PDF
基于增强的鲁棒主成分分析的脉冲噪声去除算法
3
作者 陈桐 纪航 +2 位作者 王晓东 徐晔 陆昱 《计算机应用文摘》 2024年第10期88-91,共4页
脉冲噪声的去除对提高图像的视觉质量和后续的图像分析具有重要意义。为了提高脉冲噪声的去噪性能并保留图像边缘细节,文章提出了一种新的基于鲁棒主成分分析的图像去噪算法。通过参数化对数函数逼近秩函数来增强低秩项,该算法能够保留... 脉冲噪声的去除对提高图像的视觉质量和后续的图像分析具有重要意义。为了提高脉冲噪声的去噪性能并保留图像边缘细节,文章提出了一种新的基于鲁棒主成分分析的图像去噪算法。通过参数化对数函数逼近秩函数来增强低秩项,该算法能够保留更多分布于较大奇异值上的边缘结构信息。与现有几种先进的去噪算法进行比较,文章提出的算法在客观数值和主观视觉方面均有令人满意的效果,可在移除脉冲噪声的同时充分保留图像的边缘特征。 展开更多
关键词 脉冲噪声 鲁棒主成分分析 对数函数 低秩
下载PDF
低秩矩阵恢复算法综述 被引量:72
4
作者 史加荣 郑秀云 +1 位作者 魏宗田 杨威 《计算机应用研究》 CSCD 北大核心 2013年第6期1601-1605,共5页
将鲁棒主成分分析、矩阵补全和低秩表示统称为低秩矩阵恢复,并对近年来出现的低秩矩阵恢复算法进行了简要的综述。讨论了鲁棒主成分分析的各种优化模型及相应的迭代算法,分析了矩阵补全问题及求解它的不精确增广拉格朗日乘子算法,介绍... 将鲁棒主成分分析、矩阵补全和低秩表示统称为低秩矩阵恢复,并对近年来出现的低秩矩阵恢复算法进行了简要的综述。讨论了鲁棒主成分分析的各种优化模型及相应的迭代算法,分析了矩阵补全问题及求解它的不精确增广拉格朗日乘子算法,介绍了低秩表示的优化模型及求解算法。最后指出了有待进一步研究的问题。 展开更多
关键词 低秩矩阵恢复 鲁棒主成分分析 矩阵补全 低秩表示 增广拉格朗日乘子算法
下载PDF
多线性鲁棒主成分分析 被引量:7
5
作者 史加荣 周水生 郑秀云 《电子学报》 EI CAS CSCD 北大核心 2014年第8期1480-1486,共7页
鲁棒主成分分析(RPCA)是恢复低秩与稀疏成分的一种非常有效的方法.本文将RPCA推广到张量情形,提出了多线性鲁棒主成分分析(MRPCA)框架.首先建立了MRPCA模型,即最小化张量核范数与l1范数的加权组合.然后使用增广拉格朗日乘子法求解上述... 鲁棒主成分分析(RPCA)是恢复低秩与稀疏成分的一种非常有效的方法.本文将RPCA推广到张量情形,提出了多线性鲁棒主成分分析(MRPCA)框架.首先建立了MRPCA模型,即最小化张量核范数与l1范数的加权组合.然后使用增广拉格朗日乘子法求解上述张量核范数优化问题.实验结果证实:对于具有多线性结构的数据,MRPCA比RPCA更加鲁棒. 展开更多
关键词 多线性鲁棒主成分分析 鲁棒主成分分析 低秩 核范数最小化 增广拉格朗日乘子法
下载PDF
基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术 被引量:11
6
作者 刘哲 徐涛 +1 位作者 宋余庆 徐春艳 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第5期1614-1620,共7页
针对传统的图像处理是以单个像素点为基础进行融合而忽略了信息的相似性以及存在信息丢失的问题,提出了基于非下采样Contourlet变换(Nonsubsampled contourlet transform,NSCT)和相似信息鲁棒主成分分析(Robust principle component ana... 针对传统的图像处理是以单个像素点为基础进行融合而忽略了信息的相似性以及存在信息丢失的问题,提出了基于非下采样Contourlet变换(Nonsubsampled contourlet transform,NSCT)和相似信息鲁棒主成分分析(Robust principle component analysis,RPCA)模型的图像融合技术。首先对源图像获取图像块构造初始矩阵,通过对构造矩阵进行NSCT分解获得高频和低频部分,利用提出的具有相似信息低秩矩阵模型将低频成分分解成低秩矩阵和稀疏误差矩阵,再分别对两幅图像的低秩矩阵、稀疏误差矩阵及高频成分采用绝对值最大法融合规则进行融合,最后通过逆变换得到融合图像。MRI和CT的脑部图像的实验分析结果表明,本文算法可以更好地保留源图像中的边缘和纹理信息。 展开更多
关键词 图像处理 图像融合 非下采样CONTOURLET变换 鲁棒主成分分析 低秩矩阵
下载PDF
采用低秩与加权稀疏分解的视频前景检测算法 被引量:8
7
作者 常侃 张智勇 +1 位作者 陈诚 覃团发 《电子学报》 EI CAS CSCD 北大核心 2017年第9期2272-2280,共9页
传统的鲁棒主成分分析模型能较好地解决视频前景检测问题.但是,若该模型的假设条件不能满足,算法性能会变差.针对此问题,本文提出了一种低秩与加权稀疏分解模型,通过对前景矩阵加权以增强其稀疏性.在建立加权矩阵的过程中,采用光流法获... 传统的鲁棒主成分分析模型能较好地解决视频前景检测问题.但是,若该模型的假设条件不能满足,算法性能会变差.针对此问题,本文提出了一种低秩与加权稀疏分解模型,通过对前景矩阵加权以增强其稀疏性.在建立加权矩阵的过程中,采用光流法获取每帧的运动矢量,以区分真实运动区域.其次,进一步提出一种增强模型,通过将加权矩阵作用于观测矩阵及背景矩阵,防止前景与背景的错误分离.实验结果表明,在无噪和有噪的情况下,提出的算法均能有效地分离监控视频中的前景和背景. 展开更多
关键词 前景检测 运动目标检测 鲁棒主成分分析 低秩表示 光流法
下载PDF
基于加权RPCA的非局部图像去噪方法 被引量:8
8
作者 杨国亮 王艳芳 +1 位作者 丰义琴 鲁海荣 《计算机工程与设计》 北大核心 2015年第11期3035-3040,共6页
在分析核范数基础上,提出基于加权鲁棒主成分分析(WRPCA)的非局部去噪方法。将加权核范数引入鲁棒主成份分析模型,构建加权鲁棒主成份分析模型(WRPCA),采用增广拉格朗日乘子法对模型进行求解,将WRPCA用于图像去噪。根据图像的自相似性,... 在分析核范数基础上,提出基于加权鲁棒主成分分析(WRPCA)的非局部去噪方法。将加权核范数引入鲁棒主成份分析模型,构建加权鲁棒主成份分析模型(WRPCA),采用增广拉格朗日乘子法对模型进行求解,将WRPCA用于图像去噪。根据图像的自相似性,对噪声图像进行分块,通过块匹配法对图像块进行聚类,获得相似块组矩阵;通过加权鲁棒主成分分析(WRPCA)算法对相似块组矩阵进行低秩矩阵恢复。实验结果表明,无论对低噪声图像和高噪声图像,该方法去噪效果相比现有的经典算法都有一定提高。WRPCA算法对图像结构保持有很好效果,在保持图像纹理细节方面优于其它去噪算法。 展开更多
关键词 鲁棒主成分分析 加权核范数 低秩 图像去噪 自相似性
下载PDF
基于鲁棒主成分分析的红外图像小目标检测 被引量:12
9
作者 王忠美 杨晓梅 顾行发 《兵工学报》 EI CAS CSCD 北大核心 2016年第9期1753-1760,共8页
鲁棒的小目标检测是红外目标搜索与跟踪的关键技术,提出一种改进的单帧红外图像小目标检测算法。该方法将原始红外图像通过预处理变换到新的红外块图像模式,在红外块图像上,将红外图像小目标检测问题转换为低秩矩阵和稀疏矩阵分离的鲁... 鲁棒的小目标检测是红外目标搜索与跟踪的关键技术,提出一种改进的单帧红外图像小目标检测算法。该方法将原始红外图像通过预处理变换到新的红外块图像模式,在红外块图像上,将红外图像小目标检测问题转换为低秩矩阵和稀疏矩阵分离的鲁棒主成分分析(RPCA)问题。考虑到红外图像中噪声和杂波的存在,用交替方向方法求解带噪声的RPCA问题,获得稀疏目标图像,并对获得的稀疏目标图像采用简单的图像分割算法进行目标检测。对空天、海天、天云、海面4种不同场景的红外图像小目标检测,进行仿真实验,结果验证了所提出算法的有效性。 展开更多
关键词 兵器科学与技术 红外图像 小目标检测 块图像模型 低秩矩阵恢复 鲁棒主成分分析
下载PDF
低秩鲁棒性主成分分析的遮挡人脸识别 被引量:13
10
作者 唐娴 黄军伟 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第4期460-465,共6页
为了提高遮挡人脸的识别效果,提出了低秩鲁棒性主成分分析的遮挡人脸识别算法。首先采集人脸图像,并进行相应的预处理,然后采用鲁棒性主成分分析对人脸样本进行分解,并建立人脸图像训练样本和测试样本的低秩矩阵和误差矩阵,最后根据误... 为了提高遮挡人脸的识别效果,提出了低秩鲁棒性主成分分析的遮挡人脸识别算法。首先采集人脸图像,并进行相应的预处理,然后采用鲁棒性主成分分析对人脸样本进行分解,并建立人脸图像训练样本和测试样本的低秩矩阵和误差矩阵,最后根据误差矩阵对人脸识别进行加权和识别,并采用经典人脸数据库进行仿真实验,结果表明,低秩鲁棒性主成分分析的遮挡人脸识别率得到显著提高,降低了遮挡人脸的误识率,具有更优的鲁棒性。 展开更多
关键词 鲁棒性主成分分析 模式识别 遮挡人脸 低秩映射 误识率
下载PDF
基于RPCA的图像模糊边缘检测算法 被引量:7
11
作者 李姗姗 陈莉 +1 位作者 张永新 袁娅婷 《计算机科学》 CSCD 北大核心 2018年第5期273-279,290,共8页
针对传统边缘检测方法未能在抗噪性能与边缘检测精度之间取得较好的权衡的问题,利用鲁棒主成分分析模型良好的矩阵恢复能力与图像模糊边缘检测算法较佳的边缘检测性能,提出一种基于RPCA的图像模糊边缘检测算法,将图像的边缘检测问题转... 针对传统边缘检测方法未能在抗噪性能与边缘检测精度之间取得较好的权衡的问题,利用鲁棒主成分分析模型良好的矩阵恢复能力与图像模糊边缘检测算法较佳的边缘检测性能,提出一种基于RPCA的图像模糊边缘检测算法,将图像的边缘检测问题转化为图像主成分的边缘检测问题。该算法对含噪图像进行RPCA分解,得到对应的稀疏图像和低秩图像,再用一种基于阈值的隶属函数将低秩图像转化至等效的模糊特征平面,并在该特征平面上进行模糊增强运算,最后进行空域转化及边缘提取等操作得到最终的边缘图像。实验结果表明,该算法提高了边缘定位的精度,对不同类型、不同强度的噪声均具有较好的抑制能力,适用于对实时性要求不高的图像处理。 展开更多
关键词 鲁棒主成分分析 低秩图像 边缘检测 隶属函数 模糊特征平面
下载PDF
自适应低秩稀疏分解在运动目标检测中的应用 被引量:5
12
作者 金静 党建武 +1 位作者 王阳萍 翟凤文 《计算机科学与探索》 CSCD 北大核心 2016年第12期1744-1751,共8页
针对视频处理中运动目标的精确检测这一问题,提出了一种自适应的低秩稀疏分解算法。该算法首先用背景模型与待求解的帧向量构建增广矩阵,然后使用鲁棒的主成分分析(robust principal component analysis,RPCA)对降维后的增广矩阵进行低... 针对视频处理中运动目标的精确检测这一问题,提出了一种自适应的低秩稀疏分解算法。该算法首先用背景模型与待求解的帧向量构建增广矩阵,然后使用鲁棒的主成分分析(robust principal component analysis,RPCA)对降维后的增广矩阵进行低秩稀疏分解,分离出的低秩部分和稀疏噪声分别对应于视频帧的背景和运动前景,然后使用增量奇异值分解方法用当前得到的背景向量更新背景模型。实验结果表明,该算法能更好地处理光线变化、背景运动等复杂场景,并有效降低算法的延迟和内存的占用。 展开更多
关键词 运动目标检测 低秩稀疏分解 自适应的鲁棒主成分分析
下载PDF
基于稳健主成分分析与核稀疏表示的人脸识别 被引量:6
13
作者 廖瑞华 李勇帆 刘宏 《计算机工程》 CAS CSCD 北大核心 2016年第2期200-205,共6页
针对现有人脸识别方法难以有效抑制噪声和误差干扰(如光照、遮挡和表情等)的问题,提出一种基于稳健主成分分析的核稀疏表示分类算法。利用稳健主成分分析将各类训练样本转化为低秩矩阵和误差矩阵之和,并运用这2个矩阵构成稀疏表示的冗... 针对现有人脸识别方法难以有效抑制噪声和误差干扰(如光照、遮挡和表情等)的问题,提出一种基于稳健主成分分析的核稀疏表示分类算法。利用稳健主成分分析将各类训练样本转化为低秩矩阵和误差矩阵之和,并运用这2个矩阵构成稀疏表示的冗余字典。将核稀疏表示问题通过矩阵变换转化为常规的稀疏表示问题,采用正交匹配追踪算法求解该问题得到稀疏表示系数。通过稀疏表示系数计算每个类的重构误差,从而实现人脸识别。实验结果表明,与SRC,ESRC等算法相比,该算法具有较高的人脸识别率,且对噪声和误差干扰有较强的适应能力。 展开更多
关键词 稳健主成分分析 核稀疏表示 人脸识别 正交匹配追踪 低秩矩阵 冗余字典
下载PDF
改进的低秩稀疏分解及其在目标检测中的应用 被引量:7
14
作者 杨真真 范露 +2 位作者 杨永鹏 匡楠 杨震 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第4期198-206,共9页
针对传统低秩稀疏分解算法用于运动目标检测时,前景提取结果容易受噪声干扰以及检测结果不完整的问题,提出了一种新的低秩稀疏分解模型。考虑到视频前景目标呈结构化分布,以及动态背景对前景提取结果造成影响,该模型利用结构化稀疏范数... 针对传统低秩稀疏分解算法用于运动目标检测时,前景提取结果容易受噪声干扰以及检测结果不完整的问题,提出了一种新的低秩稀疏分解模型。考虑到视频前景目标呈结构化分布,以及动态背景对前景提取结果造成影响,该模型利用结构化稀疏范数对前景进行约束,且将稀疏部分所代表的运动区域进一步划分为动态背景部分与前景部分;然后采用广义交替方向乘子法对提出的模型进行求解,并分析了算法的复杂度;最后进行仿真实验将其应用到运动目标检测中。实验数据结果验证了提出的方法比其他基于低秩稀疏分解的运动目标检测方法更加稳定有效,更具有普适性,且对不同类型的噪声均具有一定的抗噪性。 展开更多
关键词 低秩稀疏分解 结构化稀疏 鲁棒主成分分析 广义交替方向乘子法 目标检测
下载PDF
有监督低秩子空间恢复的正则鲁棒稀疏表示人脸识别算法 被引量:2
15
作者 胡正平 白帆 +1 位作者 王蒙 孙哲 《信号处理》 CSCD 北大核心 2016年第11期1299-1307,共9页
针对训练样本和测试样本均存在光照及遮挡时,破坏图像低秩结构问题,本文提出基于监督低秩子空间恢复的正则鲁棒稀疏表示人脸识别算法。首先,将所有训练样本构造成矩阵D,对矩阵D进行监督低秩矩阵分解,分解为低秩类相关结构A,低秩类内差... 针对训练样本和测试样本均存在光照及遮挡时,破坏图像低秩结构问题,本文提出基于监督低秩子空间恢复的正则鲁棒稀疏表示人脸识别算法。首先,将所有训练样本构造成矩阵D,对矩阵D进行监督低秩矩阵分解,分解为低秩类相关结构A,低秩类内差异结构B和稀疏误差结构E;然后用主成分分析方法找到类相关结构A低秩子空间的变换矩阵;再通过变换矩阵将训练样本和测试样本投影到低秩子空间;最后,在低秩子空间中,通过正则鲁棒稀疏编码进行加权分类识别。在AR和Extended Yale B公开人脸数据库上的实验结果验证本文算法的有效性及鲁棒性。 展开更多
关键词 人脸识别 低秩分解 主成分分析 正则鲁棒编码
下载PDF
不完全鲁棒主成分分析的正则化方法及其在背景建模中的应用 被引量:3
16
作者 史加荣 郑秀云 杨威 《计算机应用》 CSCD 北大核心 2015年第10期2824-2827,2832,共5页
针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正... 针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正则项的加权组合;然后使用增广拉格朗日乘子法来求解所提出的凸优化模型,此算法具有良好的可扩展性和较低的计算复杂度;最后,将RIRPCA应用到视频背景建模中。实验结果表明,RIRPCA比矩阵补全和不完全RPCA等方法在恢复丢失元素和分离前景上具有优越性。 展开更多
关键词 鲁棒主成分分析 低秩矩阵恢复 背景建模 核范数最小化 增广拉格朗日乘子法
下载PDF
利用数据低秩性和稀疏性的位场分离 被引量:4
17
作者 朱丹 刘天佑 李宏伟 《石油地球物理勘探》 EI CSCD 北大核心 2019年第4期925-936,I0014,共13页
鲁棒主成分分析将低维信号秩最小的单目标函数优化问题扩展成低维信号秩最小且高维信号稀疏的双目标函数优化问题。针对传统位场分离方法(如匹配滤波等)易出现欠拟合或过拟合现象,本文分析了区域场的低秩特征和局部场的稀疏特征,采用鲁... 鲁棒主成分分析将低维信号秩最小的单目标函数优化问题扩展成低维信号秩最小且高维信号稀疏的双目标函数优化问题。针对传统位场分离方法(如匹配滤波等)易出现欠拟合或过拟合现象,本文分析了区域场的低秩特征和局部场的稀疏特征,采用鲁棒主成分分析对位场进行分离,使得位场分离更加稳健。理论模型计算结果表明,该方法是一种有效、易于实现、权系数λ取值宽松的空间域方法,能够避免傅里叶变换带来的误差。最后将该方法用于宁夏卫宁北山地区重磁异常的处理解释,分离的局部低重、高磁异常与已知隐伏岩体对应关系好,并圈定了6个可能赋存隐伏岩体的异常区。 展开更多
关键词 鲁棒主成分分析(RPCA) 位场分离 低秩矩阵 稀疏矩阵 EALM算法 卫宁北山地区
下载PDF
低秩–稀疏与全变分表示的运动目标检测方法 被引量:3
18
作者 杨磊 庞芳 胡豁生 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第1期81-88,共8页
针对含有动态背景的运动目标检测问题,本文提出了一种低秩–稀疏与全变分表示的运动目标检测方法.提出方法以鲁棒主成分分析(RPCA)为基础,利用三维全变分对运动目标约束,去除动态背景的干扰;同时利用低秩矩阵在正交子空间下系数的群稀... 针对含有动态背景的运动目标检测问题,本文提出了一种低秩–稀疏与全变分表示的运动目标检测方法.提出方法以鲁棒主成分分析(RPCA)为基础,利用三维全变分对运动目标约束,去除动态背景的干扰;同时利用低秩矩阵在正交子空间下系数的群稀疏性来加速低秩矩阵的秩最小化,弥补全变分计算量大的问题,平衡整体运行速度.实验结果表明,该方法不仅能准确检测复杂背景下的运动目标,而且还保持了较快的运行速度. 展开更多
关键词 鲁棒主成分分析 低秩–稀疏 全变分 目标检测
下载PDF
F范数度量下的鲁棒张量低维表征 被引量:1
19
作者 王肖锋 石乐岩 +2 位作者 杨璐 刘军 周海波 《自动化学报》 EI CAS CSCD 北大核心 2023年第8期1799-1812,共14页
张量主成分分析(Tensor principal component analysis, TPCA)在彩色图像低维表征领域得到广泛深入研究,采用F范数平方作为低维投影的距离度量方式,表征含离群数据和噪声图像的鲁棒性较弱.L1范数能够抑制噪声的影响,但所获的低维投影数... 张量主成分分析(Tensor principal component analysis, TPCA)在彩色图像低维表征领域得到广泛深入研究,采用F范数平方作为低维投影的距离度量方式,表征含离群数据和噪声图像的鲁棒性较弱.L1范数能够抑制噪声的影响,但所获的低维投影数据缺乏重构误差约束,其局部表征能力也较弱.针对上述问题,利用F范数作为目标函数的距离度量方式,提出一种基于F范数的分块张量主成分分析算法(Block TPCA withF-norm,BlockTPCA-F),提高张量低维表征的鲁棒性.考虑到同时约束投影距离与重构误差,提出一种基于比例F范数的分块张量主成分分析算法(Block TPCA with proportional F-norm, BlockTPCA-PF),其最大化投影距离与最小化重构误差均得到了优化.然后,给出其贪婪的求解算法,并对其收敛性进行理论证明.最后,对包含不同噪声块和具有实际遮挡的彩色人脸数据集进行实验,结果表明,所提算法在平均重构误差、图像重构与分类率等方面均得到明显提升,在张量低维表征中具有较强的鲁棒性. 展开更多
关键词 张量主成分分析 低维表征 特征提取 鲁棒性 重构误差
下载PDF
基于稀疏子空间聚类的跨域人脸迁移学习方法 被引量:4
20
作者 朱俊勇 逯峰 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期1-7,共7页
人脸识别的效果很大程度上依赖于已标定的训练数据的规模,当训练样本严重不足时类内及类间分布的估计将会出现严重偏差。考虑到人工标定的成本过高,如果能对与目标问题相关的一些已有数据加以利用,以此来取代人工标定数据或减少人工标... 人脸识别的效果很大程度上依赖于已标定的训练数据的规模,当训练样本严重不足时类内及类间分布的估计将会出现严重偏差。考虑到人工标定的成本过高,如果能对与目标问题相关的一些已有数据加以利用,以此来取代人工标定数据或减少人工标定的数据量,将为训练样本不足的人脸识别问题提供一套可行的解决方案。为此,拟针对这一问题发展出一种基于稀疏子空间聚类和鲁棒主成分分析的人脸迁移学习方法,在辅助数据满足多线性子空间假设下,能从无类标的异源辅助数据中实现信息迁移,挖掘对目标分类问题有益的成分。 展开更多
关键词 稀疏子空间聚类 低秩矩阵分解 鲁棒主成分分析 跨域人脸迁移学习
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部