In order to rank searching results according to the user preferences,a new personalized web pages ranking algorithm called PWPR(personalized web page ranking)with the idea of adjusting the ranking scores of web page...In order to rank searching results according to the user preferences,a new personalized web pages ranking algorithm called PWPR(personalized web page ranking)with the idea of adjusting the ranking scores of web pages in accordance with user preferences is proposed.PWPR assigns the initial weights based on user interests and creates the virtual links and hubs according to user interests.By measuring user click streams,PWPR incrementally reflects users’ favors for the personalized ranking.To improve the accuracy of ranking, PWPR also takes collaborative filtering into consideration when the query with similar is submitted by users who have similar user interests. Detailed simulation results and comparison with other algorithms prove that the proposed PWPR can adaptively provide personalized ranking and truly relevant information to user preferences.展开更多
To overcome the limitation that complex data types with noun attributes cannot be processed by rank learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision tree,...To overcome the limitation that complex data types with noun attributes cannot be processed by rank learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision tree, the splitting rule of the decision tree is revised with a new definition of rank impurity. A new rank learning algorithm, which can be intuitively explained, is obtained and its theoretical basis is provided. The experimental results show that in the aspect of average rank loss, the ranking tree algorithm outperforms perception ranking and ordinal regression algorithms and it also has a faster convergence speed. The rank learning algorithm based on the decision tree is able to process categorical data and select relative features.展开更多
In order to discover the probability distribution feature of edge in aviation network adjacent matrix of China and on the basis of this feature to establish an algorithm of searching non-overlap community structure in...In order to discover the probability distribution feature of edge in aviation network adjacent matrix of China and on the basis of this feature to establish an algorithm of searching non-overlap community structure in network to reveal the inner principle of complex network with the feature of small world in aspect of adjacent matrix and community structure,aviation network adjacent matrix of China was transformed according to the node rank and the matrix was arranged on the basis of ascending node rank with the center point as original point.Adjacent probability from the original point to extension around in approximate area was calculated.Through fitting probability distribution curve,power function of probability distribution of edge in adjacent matrix arranged by ascending node rank was found.According to the feature of adjacent probability distribution,deleting step by step with node rank ascending algorithm was set up to search non-overlap community structure in network and the flow chart of algorithm was given.A non-overlap community structure with 10 different scale communities in aviation network of China was found by the computer program written on the basis of this algorithm.展开更多
The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Unif...The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Uniform Resource Locators(URLs).Three categories of features,both ML and Deep Learning(DL)algorithms and a ranking schema are included in the proposed framework.We apply frequency and prediction-based embeddings,such as hash vectorizer,Term Frequency-Inverse Dense Frequency(TF-IDF)and predictors,word to vector-word2vec(continuous bag of words,skip-gram)from Google,to extract features from text.Further,we apply more state-of-the-art methods to create vectorized features,such as GloVe.Additionally,feature engineering that is specific to URL structure is deployed to detect scams and other threats.For framework assessment,four ranking indicators are weighted:computational time and performance as accuracy,F1 score and type error II.For the computational time,we propose a new metric-Feature Building Time(FBT)as the cutting-edge feature builders(like doc2vec or GloVe)require more time.By applying the proposed assessment step,the skip-gram algorithm of word2vec surpasses other feature builders in performance.Additionally,eXtreme Gradient Boost(XGB)outperforms other classifiers.With this setup,we attain an accuracy of 99.5%and an F1 score of 0.99.展开更多
Software developers endeavor to build their products with the least number of bugs.Despite this,many vulnerabilities are detected in software that threatens its integrity.Various automated software i.e.,vulnerability ...Software developers endeavor to build their products with the least number of bugs.Despite this,many vulnerabilities are detected in software that threatens its integrity.Various automated software i.e.,vulnerability scanners,are available in the market which helps detect and manage vulnerabilities in a computer,application,or a network.Hence,the choice of an appropriate vulnerability scanner is crucial to ensure efficient vulnerability management.The current work serves a dual purpose,first,to identify the key factors which affect the vulnerability discovery process in a network.The second,is to rank the popular vulnerability scanners based on the identified attributes.This will aid the firm in determining the best scanner for them considering multiple aspects.The multi-criterion decision making based ranking approach has been discussed using the Intuitionistic Fuzzy set(IFS)and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)to rank the various scanners.Using IFS TOPSIS,the opinion of a whole group could be simultaneously considered in the vulnerability scanner selection.In this study,five popular vulnerability scanners,namely,Nessus,Fsecure Radar,Greenbone,Qualys,and Nexpose have been considered.The inputs of industry specialists i.e.,people who deal in software security and vulnerability management process have been taken for the ranking process.Using the proposed methodology,a hierarchical classification of the various vulnerability scanners could be achieved.The clear enumeration of the steps allows for easy adaptability of the model to varied situations.This study will help product developers become aware of the needs of the market and design better scanners.And from the user’s point of view,it will help the system administrators in deciding which scanner to deploy depending on the company’s needs and preferences.The current work is the first to use a Multi Criterion Group Decision Making technique in vulnerability scanner selection.展开更多
In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all ...In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all elements of each column of the binary parity-check matrix H corresponding to the original code with the same nonzero element of any field, the first class of nonbinary LDPC codes with flexible field order is proposed. The second method is to replace the nonzero elements of some columns in H with different nonzero field elements in a given field, and then another class of nonbinary LDPC codes with various rates is obtained. Simulation results show that the proposed nonbinary LDPC codes perform well over the AWGN channel with the iterative decoding algorithms.展开更多
During the recognition and localization process of green apple targets,problems such as uneven illumination,occlusion of branches and leaves need to be solved.In this study,the multi-scale Retinex with color restorati...During the recognition and localization process of green apple targets,problems such as uneven illumination,occlusion of branches and leaves need to be solved.In this study,the multi-scale Retinex with color restoration(MSRCR)algorithm was applied to enhance the original green apple images captured in an orchard environment,aiming to minimize the impacts of varying light conditions.The enhanced images were then explicitly segmented using the mean shift algorithm,leading to a consistent gray value of the internal pixels in an independent fruit.After that,the fuzzy attention based on information maximization algorithm(FAIM)was developed to detect the incomplete growth position and realize threshold segmentation.Finally,the poorly segmented images were corrected using the K-means algorithm according to the shape,color and texture features.The users intuitively acquire the minimum enclosing rectangle localization results on a PC.A total of 500 green apple images were tested in this study.Compared with the manifold ranking algorithm,the K-means clustering algorithm and the traditional mean shift algorithm,the segmentation accuracy of the proposed method was 86.67%,which was 13.32%,19.82%and 9.23%higher than that of the other three algorithms,respectively.Additionally,the false positive and false negative errors were 0.58%and 11.64%,respectively,which were all lower than the other three compared algorithms.The proposed method accurately recognized the green apples under complex illumination conditions and growth environments.Additionally,it provided effective references for intelligent growth monitoring and yield estimation of fruits.展开更多
Due to over-abundant information on the Web, information filtering becomes a key task for online users to obtain relevant suggestions and how to extract the most related item is always a key topic for researchers in v...Due to over-abundant information on the Web, information filtering becomes a key task for online users to obtain relevant suggestions and how to extract the most related item is always a key topic for researchers in various fields. In this paper, we adopt tools used to analyze complex networks to evaluate user reputation and item quality. In our proposed Accumulative Time Based Ranking (ATR) algorithm, we take into account the growth record of the network to identify the evolution of the reputation of users and the quality of items, by incorporating two behavior weighting factors which can capture the hidden facts on reputation and quality dynamics for each user and item respectively. Our proposed ATR algorithm mainly combines the iterative approach to rank user reputation and item quality with temporal dependence compared with other reputation evaluation methods. We show that our algorithm outperforms other benchmark ranking algorithms in terms of precision and robustness on empirical datasets from various online retailers and the citation datasets among research publications. Therefore, our proposed method has the capability to effectively evaluate user reputation and item quality.展开更多
Fluctuation evaluation is an important task in promoting the accommodation of photovoltaic (PV) power generation. This paper proposes an evaluation method to quantify the power fluctuation of PV plants. This consists ...Fluctuation evaluation is an important task in promoting the accommodation of photovoltaic (PV) power generation. This paper proposes an evaluation method to quantify the power fluctuation of PV plants. This consists of an index system and a ranking method based on the RankBoost algorithm. Eleven indices are devised and included in the index system to fully cover diverse fluctuation features. By handling missing and invalid data effectively, the ranking method fuses multiple indices automatically and provides a systematic and comprehensive comparison of power fluctuation. Simulation results based on power data from six PV plants indicate that the evaluation list obtained by the RankBoost ranking method is better represented and more comprehensive than that derived by the equal weight method.展开更多
Effective identification of pollution sources is particularly important for indoor air quality.Accurate estimation of source strength is the basis for source effective identification.This paper proposes an optimizatio...Effective identification of pollution sources is particularly important for indoor air quality.Accurate estimation of source strength is the basis for source effective identification.This paper proposes an optimization method for the deconvolution process in the source strength inverse calculation.In the scheme,the concept of time resolution was defined,and combined with different filtering positions and filtering algorithms.The measures to reduce effects of measurement noise were quantitatively analyzed.Additionally,the performances of nine deconvolution inverse algorithms under experimental and simulated conditions were evaluated and scored.The hybrid algorithms were proposed and compared with single algorithms including Tikhonov regularization and iterative methods.Results showed that for the filtering position and algorithm,Butterworth filtering performed better,and different filtering positions had little effect on the inverse calculation.For the calculation time step,the optimal Tr(time resolution)was 0.667%and 1.33%in the simulation and experiment,respectively.The hybrid algorithms were found to not perform better than the single algorithms,and the SART(simultaneous algebraic reconstruction technique)algorithm from CAT(computer assisted tomography)yielded better performances in the accuracy and stability of source strength identification.The relative errors of the inverse calculation for source strength were typically below 25%using the optimization scheme.展开更多
基金The Natural Science Foundation of South-Central University for Nationalities(No.YZZ07006)
文摘In order to rank searching results according to the user preferences,a new personalized web pages ranking algorithm called PWPR(personalized web page ranking)with the idea of adjusting the ranking scores of web pages in accordance with user preferences is proposed.PWPR assigns the initial weights based on user interests and creates the virtual links and hubs according to user interests.By measuring user click streams,PWPR incrementally reflects users’ favors for the personalized ranking.To improve the accuracy of ranking, PWPR also takes collaborative filtering into consideration when the query with similar is submitted by users who have similar user interests. Detailed simulation results and comparison with other algorithms prove that the proposed PWPR can adaptively provide personalized ranking and truly relevant information to user preferences.
基金The Planning Program of Science and Technology of Hunan Province (No05JT1039)
文摘To overcome the limitation that complex data types with noun attributes cannot be processed by rank learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision tree, the splitting rule of the decision tree is revised with a new definition of rank impurity. A new rank learning algorithm, which can be intuitively explained, is obtained and its theoretical basis is provided. The experimental results show that in the aspect of average rank loss, the ranking tree algorithm outperforms perception ranking and ordinal regression algorithms and it also has a faster convergence speed. The rank learning algorithm based on the decision tree is able to process categorical data and select relative features.
基金National Natural Science Foundation of China(71971017).
文摘In order to discover the probability distribution feature of edge in aviation network adjacent matrix of China and on the basis of this feature to establish an algorithm of searching non-overlap community structure in network to reveal the inner principle of complex network with the feature of small world in aspect of adjacent matrix and community structure,aviation network adjacent matrix of China was transformed according to the node rank and the matrix was arranged on the basis of ascending node rank with the center point as original point.Adjacent probability from the original point to extension around in approximate area was calculated.Through fitting probability distribution curve,power function of probability distribution of edge in adjacent matrix arranged by ascending node rank was found.According to the feature of adjacent probability distribution,deleting step by step with node rank ascending algorithm was set up to search non-overlap community structure in network and the flow chart of algorithm was given.A non-overlap community structure with 10 different scale communities in aviation network of China was found by the computer program written on the basis of this algorithm.
基金supported by a grant of the Ministry of Research,Innovation and Digitization,CNCS-UEFISCDI,Project Number PN-Ⅲ-P4-PCE-2021-0334,within PNCDI Ⅲ.
文摘The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Uniform Resource Locators(URLs).Three categories of features,both ML and Deep Learning(DL)algorithms and a ranking schema are included in the proposed framework.We apply frequency and prediction-based embeddings,such as hash vectorizer,Term Frequency-Inverse Dense Frequency(TF-IDF)and predictors,word to vector-word2vec(continuous bag of words,skip-gram)from Google,to extract features from text.Further,we apply more state-of-the-art methods to create vectorized features,such as GloVe.Additionally,feature engineering that is specific to URL structure is deployed to detect scams and other threats.For framework assessment,four ranking indicators are weighted:computational time and performance as accuracy,F1 score and type error II.For the computational time,we propose a new metric-Feature Building Time(FBT)as the cutting-edge feature builders(like doc2vec or GloVe)require more time.By applying the proposed assessment step,the skip-gram algorithm of word2vec surpasses other feature builders in performance.Additionally,eXtreme Gradient Boost(XGB)outperforms other classifiers.With this setup,we attain an accuracy of 99.5%and an F1 score of 0.99.
文摘Software developers endeavor to build their products with the least number of bugs.Despite this,many vulnerabilities are detected in software that threatens its integrity.Various automated software i.e.,vulnerability scanners,are available in the market which helps detect and manage vulnerabilities in a computer,application,or a network.Hence,the choice of an appropriate vulnerability scanner is crucial to ensure efficient vulnerability management.The current work serves a dual purpose,first,to identify the key factors which affect the vulnerability discovery process in a network.The second,is to rank the popular vulnerability scanners based on the identified attributes.This will aid the firm in determining the best scanner for them considering multiple aspects.The multi-criterion decision making based ranking approach has been discussed using the Intuitionistic Fuzzy set(IFS)and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)to rank the various scanners.Using IFS TOPSIS,the opinion of a whole group could be simultaneously considered in the vulnerability scanner selection.In this study,five popular vulnerability scanners,namely,Nessus,Fsecure Radar,Greenbone,Qualys,and Nexpose have been considered.The inputs of industry specialists i.e.,people who deal in software security and vulnerability management process have been taken for the ranking process.Using the proposed methodology,a hierarchical classification of the various vulnerability scanners could be achieved.The clear enumeration of the steps allows for easy adaptability of the model to varied situations.This study will help product developers become aware of the needs of the market and design better scanners.And from the user’s point of view,it will help the system administrators in deciding which scanner to deploy depending on the company’s needs and preferences.The current work is the first to use a Multi Criterion Group Decision Making technique in vulnerability scanner selection.
基金supported in part by National Basic Research Program of China under Grant No.2012CB316100National Natural Science Foundation of China under Grants 61372074 and 91438101+1 种基金Joint Funds of the National Natural Science Foundation of China under Grant No.U1504601Science and Technology on Communication Networks Laboratory under Grant KX132600032
文摘In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all elements of each column of the binary parity-check matrix H corresponding to the original code with the same nonzero element of any field, the first class of nonbinary LDPC codes with flexible field order is proposed. The second method is to replace the nonzero elements of some columns in H with different nonzero field elements in a given field, and then another class of nonbinary LDPC codes with various rates is obtained. Simulation results show that the proposed nonbinary LDPC codes perform well over the AWGN channel with the iterative decoding algorithms.
基金This work was supported by the National High Technology Research and Development Program of China(863 Program)[Grant number 2013AA10230402]Agricultural Science and Technology Project of Shaanxi Province[Grant number 2016NY-157]Fundamental Research Funds of Central Universities[Grant number 2452016077].The authors appreciate the above funding organizations for their financial supports.The authors would also like to thank the helpful comments and suggestions provided by all the authors cited in this article and the anonymous reviewers.
文摘During the recognition and localization process of green apple targets,problems such as uneven illumination,occlusion of branches and leaves need to be solved.In this study,the multi-scale Retinex with color restoration(MSRCR)algorithm was applied to enhance the original green apple images captured in an orchard environment,aiming to minimize the impacts of varying light conditions.The enhanced images were then explicitly segmented using the mean shift algorithm,leading to a consistent gray value of the internal pixels in an independent fruit.After that,the fuzzy attention based on information maximization algorithm(FAIM)was developed to detect the incomplete growth position and realize threshold segmentation.Finally,the poorly segmented images were corrected using the K-means algorithm according to the shape,color and texture features.The users intuitively acquire the minimum enclosing rectangle localization results on a PC.A total of 500 green apple images were tested in this study.Compared with the manifold ranking algorithm,the K-means clustering algorithm and the traditional mean shift algorithm,the segmentation accuracy of the proposed method was 86.67%,which was 13.32%,19.82%and 9.23%higher than that of the other three algorithms,respectively.Additionally,the false positive and false negative errors were 0.58%and 11.64%,respectively,which were all lower than the other three compared algorithms.The proposed method accurately recognized the green apples under complex illumination conditions and growth environments.Additionally,it provided effective references for intelligent growth monitoring and yield estimation of fruits.
基金This work was supported by the National Natural Science Foundation of China under Grant No.61803266the Natural Science Foundation of Guangdong Province of China under Grant Nos.2019A1515011173 and 2019A1515011064+2 种基金the Shenzhen Fundamental Research-General Project under Grant No.JCYJ20190808162601658the Research Grants Council of the Hong Kong Special Administrative Region,China,under Grant Nos.GRF 18304316,GRF 18301217 and GRF 18301119the Dean's Research Fund of the Faculty of Liberal Arts and Social Sciences,The Education University of Hong Kong,Hong Kong Special Administrative Region,China,under Grant No.FLASS/DRF 04418,and the CCF-Baidu Open Fund.
文摘Due to over-abundant information on the Web, information filtering becomes a key task for online users to obtain relevant suggestions and how to extract the most related item is always a key topic for researchers in various fields. In this paper, we adopt tools used to analyze complex networks to evaluate user reputation and item quality. In our proposed Accumulative Time Based Ranking (ATR) algorithm, we take into account the growth record of the network to identify the evolution of the reputation of users and the quality of items, by incorporating two behavior weighting factors which can capture the hidden facts on reputation and quality dynamics for each user and item respectively. Our proposed ATR algorithm mainly combines the iterative approach to rank user reputation and item quality with temporal dependence compared with other reputation evaluation methods. We show that our algorithm outperforms other benchmark ranking algorithms in terms of precision and robustness on empirical datasets from various online retailers and the citation datasets among research publications. Therefore, our proposed method has the capability to effectively evaluate user reputation and item quality.
基金supported by National Key R&D Program of China(Technology and application of wind power/photovoltaic power prediction for promoting renewable energy consumption,2018YFB0904200)eponymous Complement S&T Program of State Grid Corporation of China(SGLNDKOOKJJS1800266).
文摘Fluctuation evaluation is an important task in promoting the accommodation of photovoltaic (PV) power generation. This paper proposes an evaluation method to quantify the power fluctuation of PV plants. This consists of an index system and a ranking method based on the RankBoost algorithm. Eleven indices are devised and included in the index system to fully cover diverse fluctuation features. By handling missing and invalid data effectively, the ranking method fuses multiple indices automatically and provides a systematic and comprehensive comparison of power fluctuation. Simulation results based on power data from six PV plants indicate that the evaluation list obtained by the RankBoost ranking method is better represented and more comprehensive than that derived by the equal weight method.
基金supported by the National Natural Science Foundation of China(No.51708286)the Natural Science Foundation of Jiangsu Province(No.BK20180701)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX20-0325).
文摘Effective identification of pollution sources is particularly important for indoor air quality.Accurate estimation of source strength is the basis for source effective identification.This paper proposes an optimization method for the deconvolution process in the source strength inverse calculation.In the scheme,the concept of time resolution was defined,and combined with different filtering positions and filtering algorithms.The measures to reduce effects of measurement noise were quantitatively analyzed.Additionally,the performances of nine deconvolution inverse algorithms under experimental and simulated conditions were evaluated and scored.The hybrid algorithms were proposed and compared with single algorithms including Tikhonov regularization and iterative methods.Results showed that for the filtering position and algorithm,Butterworth filtering performed better,and different filtering positions had little effect on the inverse calculation.For the calculation time step,the optimal Tr(time resolution)was 0.667%and 1.33%in the simulation and experiment,respectively.The hybrid algorithms were found to not perform better than the single algorithms,and the SART(simultaneous algebraic reconstruction technique)algorithm from CAT(computer assisted tomography)yielded better performances in the accuracy and stability of source strength identification.The relative errors of the inverse calculation for source strength were typically below 25%using the optimization scheme.