As a key technology of rapid prototyping and manufacturing (RP&M), rapid manufacturing of metal parts is a target of RP&M. Introducing selective laser sintering (SLS), an important branch of RP&M, this pap...As a key technology of rapid prototyping and manufacturing (RP&M), rapid manufacturing of metal parts is a target of RP&M. Introducing selective laser sintering (SLS), an important branch of RP&M, this paper gives a new method oriented on low power SLS system to fabricate metal parts. With this kind of technology, the mixture of metal and polymer powder is sintered first to get green part, then, after debinding and metal infiltration, dense parts are gotten. In the end, influencing factors of this technology are analyzed. At the same time, some applications are given.展开更多
The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results sho...The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results show that the dimension and the mass tendency to grow,which is mainly caused by elastic recovery and moisture absorption and is characterized principally by the growth of Z dimension.Self restraint can be a significant factor to influence Z growth of LOM prototypes.展开更多
The application of additive manufacturing technology is one of the main approaches to achieving the rapid casting.Additive manufacturing technology can directly prepare casting molds(cores)with no need of patterns,and...The application of additive manufacturing technology is one of the main approaches to achieving the rapid casting.Additive manufacturing technology can directly prepare casting molds(cores)with no need of patterns,and quickly cast complex castings.The combination of additive manufacturing and traditional casting technology can break the constraint of traditional casting technology,improve casting flexibility,and ameliorate the working environment.Besides,additive manufacturing promotes the realization of"free casting",greatly simplifying the processing procedures and shortening the manufacturing cycle.This paper summarizes the basic principle of additive manufacturing technology and its development situation domestically and overseas,mainly focusing on the development status of several main additive manufacturing technologies applicable to the foundry field,including three-dimensional printing,selective laser sintering,stereolithography,layered extrusion forming,etc.Finally,the future development trend of additive manufacturing technology in the foundry field is prospected.展开更多
The fabrication of pure copper microstructures with submicron resolution has found a host of applications,such as 5G communications and highly sensitive detection.The tiny and complex features of these structures can ...The fabrication of pure copper microstructures with submicron resolution has found a host of applications,such as 5G communications and highly sensitive detection.The tiny and complex features of these structures can enhance device performance during high-frequency operation.However,manufacturing pure copper microstructures remain challenging.In this paper,we present localized electrochemical deposition micro additive manufacturing(LECD-μAM).This method combines localized electrochemical deposition(LECD)and closed-loop control of atomic force servo technology,which can effectively print helical springs and hollow tubes.We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and closed-loop control of an atomic force servo.The printing state of the micro-helical springs can be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe cantilever.The results showed that it took 361 s to print a helical spring with a wire length of 320.11μm at a deposition rate of 0.887μm s^(-1),which can be changed on the fly by simply tuning the extrusion pressure and the applied voltage.Moreover,the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring.The shear modulus of the helical spring material was about 60.8 GPa,much higher than that of bulk copper(~44.2 GPa).Additionally,the microscopic morphology and chemical composition of the spring were characterized.These results delineate a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.展开更多
Metal additive manufacturing is an important branch of AM, which provides an effective method for the innovative manufacturing of metal parts. Here, flow chart and main techniques of metal additive manufacturing are f...Metal additive manufacturing is an important branch of AM, which provides an effective method for the innovative manufacturing of metal parts. Here, flow chart and main techniques of metal additive manufacturing are firstly described according to the used material types. Many application examples of metal additive manufacturing are then listed based on application value. The summary is finally given to point development direction of metal additive manufacturing in the future. Additive manufacturing, which is an effective supplement to traditional methods, will play an important role in intelligent and digital manufacturing.展开更多
Additive manufacturing technology has been developed in Xi' an Jiaotong University for almost 20 years. Up to now~ it is still attracting the attentions of the researchers or manufacturers all over the world. Some in...Additive manufacturing technology has been developed in Xi' an Jiaotong University for almost 20 years. Up to now~ it is still attracting the attentions of the researchers or manufacturers all over the world. Some in- novative processes and frontier application research are all being conducted here to catch up with the new develop- ment of this technology. In the paper, newly developed processes, such as ultraviolet-light emitting diode (UV- LED) stereolithography, ceramic stereolithography, and direct metal forming, were described. Some results of the frontier application researches, such as indirect fabrication of ceramic casting mould, wind-tunnel-testing models, photonic crystals and metamatcrials, were also briefly reviewed.展开更多
At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS...At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.展开更多
Rapid prototype manufacturing(RPM) is a new advanced manufacturing technology, which is based on the philosophy of materials increasing of lay by lay forming. Zero adventure rapid design/manufacturing can be realized ...Rapid prototype manufacturing(RPM) is a new advanced manufacturing technology, which is based on the philosophy of materials increasing of lay by lay forming. Zero adventure rapid design/manufacturing can be realized with rapid prototypes of 3D CAD of products. Rapid prototyping has been an effective tool of R&D of new products. A novel rapid prototyping and manufacturing (RP&M) technique is brought forward. The principle of the process is to form layered sections and to make the prototype or part layer by layer by deflection projection of electric charged powder granules passing through electric or magnetic field and by controllable line and field scan of the powder granule beam. The feasibility issue of the process is theoretically and experimentally investigated.It shows that deflection projection of electric charged powder granules beam passing through electric field can be significant and feasible to the rapid prototyping technique.展开更多
3D printing can spur manufacturing rebirth in Nigeria and the World in general. There are many areas where 3D printing is creating significant change, particularly in designing and prototyping of new products, in the ...3D printing can spur manufacturing rebirth in Nigeria and the World in general. There are many areas where 3D printing is creating significant change, particularly in designing and prototyping of new products, in the arts, and in visualizing abstract concepts. This is a step change from conventional manufacturing processes to rapid prototyping and layer manufacturing. This report has defined rapid prototyping, rapid manufacturing and the current technologies available to fabricate 3D components. In addition to this, it provides a brief overview of the current contributions of the Edo University Iyamho (EUI) in collaboration with the Federal University of Petroleum Resources, to sustain manufacturing research initiatives towards the development of locally fabricated 3D printer and the possible future Additive Manufacturing in Nigeria. It is anticipated that this work will benefit the Nigerian academic, research institutes, industries, thus, enhance the GDP contribution of the manufacturing sector in Nigeria.展开更多
The paper introduces the origin of the word of Direct Digital Manufacturing and other forms of address, and the working principles of Direct Digital Manufacturing technology and major types of the technology, hard- wa...The paper introduces the origin of the word of Direct Digital Manufacturing and other forms of address, and the working principles of Direct Digital Manufacturing technology and major types of the technology, hard- ware and software development, use of materials, applications, market growth and its development prospects. Focused presentations of Direct Digital Manufacturing (additive manufacturing) compared to traditional mechani- cal manufacturing industry in the use of prices, processing speed, reliability and cost advantages and characteris- tics. Particularly the significant challenges and competitiveness of Direct Digital Manufacturing technology in the processing of any complexity created directly the number of objects, internal structure and channel function, as well as the shape of the chassis components and structure of the matching and optimization.展开更多
The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combinat...The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combination is the successful model or patted creating using the RP technology.Significantly reduced lead-time, shortened learns curve, lowered revision changes cost and eliminatedor reduced mold polishing are the consequent results. high quality Electrical Discharge Machining(EDM) electrodes are sometimes difficult to be manufactured rapidly and are very time-consumingby conventional methods, even using Computer Numerical Control (CNC) machines. Abradingprovides a simple way to create etuemely detailed and complex electrode to make molds in toolingmaking industries. Integration with the rapid development of the Rapid Prototyping & Manufacturing(RP&M) technology, the rapid electrode abrading process has been regarded as one of the majorbreakthrough in tooling making technology.展开更多
One of the most important issues to resolve in parts manufactured from rapid manufacturing (RM) technologies is to know their behavior working under real conditions. Total quality manufacturing (TQM) is only possible ...One of the most important issues to resolve in parts manufactured from rapid manufacturing (RM) technologies is to know their behavior working under real conditions. Total quality manufacturing (TQM) is only possible if mechanical properties are well known in the design stage depending on the processing parameters. This work is mainly focused on testing of several samples made with different selective laser sintering (SLS) parameters and technologies. This procedure is the starting point to establish a basis for designing for RM and the standardization of RM testing. The experiments and the analysis of variance (ANOVA) analyzed the effects of several factors on mechanical properties. The SLS technologies were 3DSystem and EOS. The results show which factor has a large effect on the variables and the interaction between them. The conclusions are very useful for developing rules for designing (designing for RM) and creating new standard rules (ISO, AISI, and DIN) for RM materials and parts testing. The ANOVA gives a better knowledge of the effects of these factors and eliminates unimportant parameters.展开更多
The rapid prototyping and manufacturing technology (RPM), is an integration of many different disciplines. It is based on an advanced dispersed-accumulated forming principle and originated from 1980s. It generates an ...The rapid prototyping and manufacturing technology (RPM), is an integration of many different disciplines. It is based on an advanced dispersed-accumulated forming principle and originated from 1980s. It generates an entity by first forming a series of layers according to the dispersed section information of the digital model, and then piling the formed layers sequentially together. It is capable of forming parts with complicated structures and non-homogeneous materials. Traditional RPM techniques are mainly used as prototypes in product invention process, such as stereolithography, three-dimensional printing, laminated object manufacturing, and fused deposition modeling. Later, with the progress of material and enabling technology, many new RPM techniques emerged out and have been already applied in the fields such as rapid tooling/moulding, direct formed usable part, nano-/micro-RPM, and biomanufacturing. This high flexible digital manufacturing method has a likely ability to become an almighty forming technology.展开更多
The effects of different factors, including the precision of selected laser sintering (SLS) equipment, sintering temperature, sintered thickness of individual layer and laser scanning route, on the SLS part accuracy h...The effects of different factors, including the precision of selected laser sintering (SLS) equipment, sintering temperature, sintered thickness of individual layer and laser scanning route, on the SLS part accuracy have been analyzed and studied. Some measures are suggested in order to improve the part accuracy made by SLS.展开更多
Recent developments of rapid prototyping and manufaturing (RP&M)technology are discussed. To facilitate application of RP&M technology as an enabling technology in product development and manufacturing, our ce...Recent developments of rapid prototyping and manufaturing (RP&M)technology are discussed. To facilitate application of RP&M technology as an enabling technology in product development and manufacturing, our center has done a series of pojects covering RP theory (modern shaping science), new RP processes and equipment,rapid tooling technology and rapid product development systems. With the STEP protocol and product modeling technology, RP&M technology can be integrated into CIMS to form a new subsystem, the free form manufacturing subsystem. The subsystem architecture is investigated in this paper.展开更多
Production of ceramic armour solutions on-demand/in-theatre would have significant logistical and military advantages.However,even assuming that such technologies could be successfully deployed in the field,such near ...Production of ceramic armour solutions on-demand/in-theatre would have significant logistical and military advantages.However,even assuming that such technologies could be successfully deployed in the field,such near net-shape manufacturing technology is relatively immature compared to conventional sintering of ceramics.In this study,the ballistic performance of a series of additively manufactured(AM)/rapidly-prototyped(RP)alumina tiles of 97.2%of the density of Sintox FATM were investigated using both forward-and reverse-ballistic experiments.These experiments,undertaken with compressed gasguns,employed the depth-of-penetration technique and flash X-ray as primary diagnostics to interrogate both efficiency of penetration and projectile-target interaction,respectively.The RP alumina was found to exhibit useful ballistic properties,successfully defeating steel-cored(AP)7.62×39 mm BXN rounds at velocities of up-to c.a.850 m/s,while exhibiting comparable failure modes to conventionally sintered armour-grade Sintox FATM.However,where a<1%by vol.Cu dopant was introduced into the RP material failure modes changed dramatically with performance dropping below that of conventionally sintered alumina.Overall,the results from both sets of experiments were complimentary and clearly indicated the potential of such RP materials to play an active role in provision of real-world body armour solutions provided quality control of the RP material can be maintained.展开更多
文摘As a key technology of rapid prototyping and manufacturing (RP&M), rapid manufacturing of metal parts is a target of RP&M. Introducing selective laser sintering (SLS), an important branch of RP&M, this paper gives a new method oriented on low power SLS system to fabricate metal parts. With this kind of technology, the mixture of metal and polymer powder is sintered first to get green part, then, after debinding and metal infiltration, dense parts are gotten. In the end, influencing factors of this technology are analyzed. At the same time, some applications are given.
文摘The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results show that the dimension and the mass tendency to grow,which is mainly caused by elastic recovery and moisture absorption and is characterized principally by the growth of Z dimension.Self restraint can be a significant factor to influence Z growth of LOM prototypes.
基金the National Natural Science Foundation of China(Grant Nos.59635040,51775204,51375190)the National Key R&D Program of China(Grant Nos.2020YFB2008300,2020YFB2008304)。
文摘The application of additive manufacturing technology is one of the main approaches to achieving the rapid casting.Additive manufacturing technology can directly prepare casting molds(cores)with no need of patterns,and quickly cast complex castings.The combination of additive manufacturing and traditional casting technology can break the constraint of traditional casting technology,improve casting flexibility,and ameliorate the working environment.Besides,additive manufacturing promotes the realization of"free casting",greatly simplifying the processing procedures and shortening the manufacturing cycle.This paper summarizes the basic principle of additive manufacturing technology and its development situation domestically and overseas,mainly focusing on the development status of several main additive manufacturing technologies applicable to the foundry field,including three-dimensional printing,selective laser sintering,stereolithography,layered extrusion forming,etc.Finally,the future development trend of additive manufacturing technology in the foundry field is prospected.
基金supported by the National Natural Science Foundation of China under Grant U19A20103the Fund for Jilin Province Scientific and Technological Development Program under No.Z20190101005JH。
文摘The fabrication of pure copper microstructures with submicron resolution has found a host of applications,such as 5G communications and highly sensitive detection.The tiny and complex features of these structures can enhance device performance during high-frequency operation.However,manufacturing pure copper microstructures remain challenging.In this paper,we present localized electrochemical deposition micro additive manufacturing(LECD-μAM).This method combines localized electrochemical deposition(LECD)and closed-loop control of atomic force servo technology,which can effectively print helical springs and hollow tubes.We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and closed-loop control of an atomic force servo.The printing state of the micro-helical springs can be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe cantilever.The results showed that it took 361 s to print a helical spring with a wire length of 320.11μm at a deposition rate of 0.887μm s^(-1),which can be changed on the fly by simply tuning the extrusion pressure and the applied voltage.Moreover,the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring.The shear modulus of the helical spring material was about 60.8 GPa,much higher than that of bulk copper(~44.2 GPa).Additionally,the microscopic morphology and chemical composition of the spring were characterized.These results delineate a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.
文摘Metal additive manufacturing is an important branch of AM, which provides an effective method for the innovative manufacturing of metal parts. Here, flow chart and main techniques of metal additive manufacturing are firstly described according to the used material types. Many application examples of metal additive manufacturing are then listed based on application value. The summary is finally given to point development direction of metal additive manufacturing in the future. Additive manufacturing, which is an effective supplement to traditional methods, will play an important role in intelligent and digital manufacturing.
文摘Additive manufacturing technology has been developed in Xi' an Jiaotong University for almost 20 years. Up to now~ it is still attracting the attentions of the researchers or manufacturers all over the world. Some in- novative processes and frontier application research are all being conducted here to catch up with the new develop- ment of this technology. In the paper, newly developed processes, such as ultraviolet-light emitting diode (UV- LED) stereolithography, ceramic stereolithography, and direct metal forming, were described. Some results of the frontier application researches, such as indirect fabrication of ceramic casting mould, wind-tunnel-testing models, photonic crystals and metamatcrials, were also briefly reviewed.
文摘At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.
文摘Rapid prototype manufacturing(RPM) is a new advanced manufacturing technology, which is based on the philosophy of materials increasing of lay by lay forming. Zero adventure rapid design/manufacturing can be realized with rapid prototypes of 3D CAD of products. Rapid prototyping has been an effective tool of R&D of new products. A novel rapid prototyping and manufacturing (RP&M) technique is brought forward. The principle of the process is to form layered sections and to make the prototype or part layer by layer by deflection projection of electric charged powder granules passing through electric or magnetic field and by controllable line and field scan of the powder granule beam. The feasibility issue of the process is theoretically and experimentally investigated.It shows that deflection projection of electric charged powder granules beam passing through electric field can be significant and feasible to the rapid prototyping technique.
文摘3D printing can spur manufacturing rebirth in Nigeria and the World in general. There are many areas where 3D printing is creating significant change, particularly in designing and prototyping of new products, in the arts, and in visualizing abstract concepts. This is a step change from conventional manufacturing processes to rapid prototyping and layer manufacturing. This report has defined rapid prototyping, rapid manufacturing and the current technologies available to fabricate 3D components. In addition to this, it provides a brief overview of the current contributions of the Edo University Iyamho (EUI) in collaboration with the Federal University of Petroleum Resources, to sustain manufacturing research initiatives towards the development of locally fabricated 3D printer and the possible future Additive Manufacturing in Nigeria. It is anticipated that this work will benefit the Nigerian academic, research institutes, industries, thus, enhance the GDP contribution of the manufacturing sector in Nigeria.
文摘The paper introduces the origin of the word of Direct Digital Manufacturing and other forms of address, and the working principles of Direct Digital Manufacturing technology and major types of the technology, hard- ware and software development, use of materials, applications, market growth and its development prospects. Focused presentations of Direct Digital Manufacturing (additive manufacturing) compared to traditional mechani- cal manufacturing industry in the use of prices, processing speed, reliability and cost advantages and characteris- tics. Particularly the significant challenges and competitiveness of Direct Digital Manufacturing technology in the processing of any complexity created directly the number of objects, internal structure and channel function, as well as the shape of the chassis components and structure of the matching and optimization.
文摘The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combination is the successful model or patted creating using the RP technology.Significantly reduced lead-time, shortened learns curve, lowered revision changes cost and eliminatedor reduced mold polishing are the consequent results. high quality Electrical Discharge Machining(EDM) electrodes are sometimes difficult to be manufactured rapidly and are very time-consumingby conventional methods, even using Computer Numerical Control (CNC) machines. Abradingprovides a simple way to create etuemely detailed and complex electrode to make molds in toolingmaking industries. Integration with the rapid development of the Rapid Prototyping & Manufacturing(RP&M) technology, the rapid electrode abrading process has been regarded as one of the majorbreakthrough in tooling making technology.
基金the participant members of ASERM (Spanish Association of Rapid Manufacturing) in this project, particularly the following technological centers: AIJU (Toy Institute Research Association), CTAG(Automotive technological centre of Galicia) and AITIIP Foundation (Plastic Injection Research Association), and the Spanish government (Industry Minister) for supplying some funding to this research project
文摘One of the most important issues to resolve in parts manufactured from rapid manufacturing (RM) technologies is to know their behavior working under real conditions. Total quality manufacturing (TQM) is only possible if mechanical properties are well known in the design stage depending on the processing parameters. This work is mainly focused on testing of several samples made with different selective laser sintering (SLS) parameters and technologies. This procedure is the starting point to establish a basis for designing for RM and the standardization of RM testing. The experiments and the analysis of variance (ANOVA) analyzed the effects of several factors on mechanical properties. The SLS technologies were 3DSystem and EOS. The results show which factor has a large effect on the variables and the interaction between them. The conclusions are very useful for developing rules for designing (designing for RM) and creating new standard rules (ISO, AISI, and DIN) for RM materials and parts testing. The ANOVA gives a better knowledge of the effects of these factors and eliminates unimportant parameters.
基金Supported by the National Natural Science Foundation of China(No. 50575118)
文摘The rapid prototyping and manufacturing technology (RPM), is an integration of many different disciplines. It is based on an advanced dispersed-accumulated forming principle and originated from 1980s. It generates an entity by first forming a series of layers according to the dispersed section information of the digital model, and then piling the formed layers sequentially together. It is capable of forming parts with complicated structures and non-homogeneous materials. Traditional RPM techniques are mainly used as prototypes in product invention process, such as stereolithography, three-dimensional printing, laminated object manufacturing, and fused deposition modeling. Later, with the progress of material and enabling technology, many new RPM techniques emerged out and have been already applied in the fields such as rapid tooling/moulding, direct formed usable part, nano-/micro-RPM, and biomanufacturing. This high flexible digital manufacturing method has a likely ability to become an almighty forming technology.
文摘The effects of different factors, including the precision of selected laser sintering (SLS) equipment, sintering temperature, sintered thickness of individual layer and laser scanning route, on the SLS part accuracy have been analyzed and studied. Some measures are suggested in order to improve the part accuracy made by SLS.
文摘Recent developments of rapid prototyping and manufaturing (RP&M)technology are discussed. To facilitate application of RP&M technology as an enabling technology in product development and manufacturing, our center has done a series of pojects covering RP theory (modern shaping science), new RP processes and equipment,rapid tooling technology and rapid product development systems. With the STEP protocol and product modeling technology, RP&M technology can be integrated into CIMS to form a new subsystem, the free form manufacturing subsystem. The subsystem architecture is investigated in this paper.
文摘Production of ceramic armour solutions on-demand/in-theatre would have significant logistical and military advantages.However,even assuming that such technologies could be successfully deployed in the field,such near net-shape manufacturing technology is relatively immature compared to conventional sintering of ceramics.In this study,the ballistic performance of a series of additively manufactured(AM)/rapidly-prototyped(RP)alumina tiles of 97.2%of the density of Sintox FATM were investigated using both forward-and reverse-ballistic experiments.These experiments,undertaken with compressed gasguns,employed the depth-of-penetration technique and flash X-ray as primary diagnostics to interrogate both efficiency of penetration and projectile-target interaction,respectively.The RP alumina was found to exhibit useful ballistic properties,successfully defeating steel-cored(AP)7.62×39 mm BXN rounds at velocities of up-to c.a.850 m/s,while exhibiting comparable failure modes to conventionally sintered armour-grade Sintox FATM.However,where a<1%by vol.Cu dopant was introduced into the RP material failure modes changed dramatically with performance dropping below that of conventionally sintered alumina.Overall,the results from both sets of experiments were complimentary and clearly indicated the potential of such RP materials to play an active role in provision of real-world body armour solutions provided quality control of the RP material can be maintained.