This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plate...This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plateau of China was employed as the case,and the derived dynamic friction formula was included into the numerical simulation based on Particle Flow Code.Results showed that the friction decreased quickly from 0.64(the peak)to 0.1(the stead value)during the 5s-period after the sliding initiation,which explained the behavior of rapid movement of the landslide.The monitored balls set at different sections of the mass showed similar variation characteritics regarding the velocity,namely evident increase at the initial phase of the movement,followed by a fluctuation phase and then a stopping one.The peak velocity was more than 100 m/s and most particles had low velocities at 300s after the landslide initiation.The spreading distance of the landslide was calculated at the two-dimension(profile)and three-dimension scale,respectively.Compared with the simulation result without considering friction weakening effect,our results indicated a max distance of about 10 km from the initial unstable position,which fit better with the actual situation.展开更多
Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for ...Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for risk assessment and mitigation design.The smoothed particle hydrodynamics(SPH)method has been successfully applied to the simulation of two-dimensional(2D)and three-dimensional(3D)flow-like landslides.However,the influence of boundary resistance on the whole process of landslide failure is rarely discussed.In this study,a boundary condition considering friction is proposed and integrated into the SPH method,and its accuracy is verified.Moreover,the Navier-Stokes equation combined with the non-Newtonian fluid rheologymodel was utilized to solve the dynamic behavior of the flow-like landslide.To verify its performance,the Shuicheng landslide event,which occurred in Guizhou,China,was taken as a case study.In the 2D simulation,a sensitivity analysis was conducted,and the results showed that the shearing strength parameters have more influence on the computation accuracy than the coefficient of viscosity.Afterwards,the dynamic characteristics of the landslide,such as the velocity and the impact area,were analyzed in the 3D simulation.The simulation results are in good agreement with the field investigations.The simulation results demonstrate that the SPH method performs well in reproducing the landslide process,and facilitates the analysis of landslide characteristics as well as the affected areas,which provides a scientific basis for conducting the risk assessment and disaster mitigation design.展开更多
Numerous large-scale fragmented bedrock landslides developed along major fault system is a world-wide phenomenon,which are often characterized with repeated reactivation throughout histories.Due to the large-scale and...Numerous large-scale fragmented bedrock landslides developed along major fault system is a world-wide phenomenon,which are often characterized with repeated reactivation throughout histories.Due to the large-scale and deep-seated features,it is normally difficult to control such landslides,which in turn pose great threat to local residents and infrastructures.Therefore,monitoring and forecasting these gigantic landslides has become a key protocol for risk reduction.This paper introduces such a typical massive landslide,named Yahuokou landslide,besides Min River in Zhouqu County,Gansu Province,China.Reactivated on July 16,2019 with a volume of approximately 4×106 m3,moving slowly and transitionally starting from top part,its toe had partially blocked the Min River and destroyed roads and houses eventually by August 11,2019.As to emergency response for such huge slowmoving landslide,there is no standard national protocols.Therefore,how to make effective emergency decision has become a challenge.Based on previous experiences,integrated multi-methods,including UAV imagery interpretation,we applied GNSS monitoring and field investigations in the early stages of landsliding,in order to assist the decisionmaking.The results show that the movement path of the current displacement is consistent with that of the 1989 reactivation event,and the slide body was separated into three relatively independent blocks with different sliding velocities and responses to rainfall.The upper and lower blocks appeared less affected by rainfall,while the middle block responded more to the changes in precipitations.It proves that the combined approaches using a variety of monitoring techniques can play an effective role in the monitoring of rapidly deformed transitional largescale landslides,and can also provide a set of reference methods for the emergency disposal of similar landslide hazards.展开更多
The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a...The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a landslide dam.To address this gap,we conducted a study using the smoothed particle hydrodynamics numerical method to investigate the evolution of landslide dams.Our study included 17 numerical simulations to examine the effects of several factors on the geometry of landslide dams,including valley inclination,sliding angle,landslide velocity,and landslide mass repose angle.Based on this,three rapid prediction models were established for calculating the maximum height,the minimum height,and the maximum width of a landslide dam.The results show that the downstream width of a landslide dam remarkably increases with the valley inclination.The position of the maximum dam height along the valley direction is independent of external factors and is always located in the middle of the landslide width area.In contrast,that position of the maximum dam height across the valley direction is significantly influenced by the sliding angle and landslide velocity.To validate our models,we applied them to three typical landslide dams and found that the calculated values of the landslide dam geometry were in good agreement with the actual values.The findings of the current study provide a better understanding of the evolution and geometry of landslide dams,giving crucial guidance for the prediction and early warning of landslide dam disasters.展开更多
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m...A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.展开更多
基金funded by the National Natural Science Foundation of China(42307248,U23A2047,42277187)Natural Science Foundation of Hebei Province(D2022202005)+1 种基金Planning and Natural Resources Research Project of Tianjin City(2022-40,KJ[2024]25)the support from the Graduated Student Innovation Funding Project of Hebei Province(CXZZSS2024007)。
文摘This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plateau of China was employed as the case,and the derived dynamic friction formula was included into the numerical simulation based on Particle Flow Code.Results showed that the friction decreased quickly from 0.64(the peak)to 0.1(the stead value)during the 5s-period after the sliding initiation,which explained the behavior of rapid movement of the landslide.The monitored balls set at different sections of the mass showed similar variation characteritics regarding the velocity,namely evident increase at the initial phase of the movement,followed by a fluctuation phase and then a stopping one.The peak velocity was more than 100 m/s and most particles had low velocities at 300s after the landslide initiation.The spreading distance of the landslide was calculated at the two-dimension(profile)and three-dimension scale,respectively.Compared with the simulation result without considering friction weakening effect,our results indicated a max distance of about 10 km from the initial unstable position,which fit better with the actual situation.
文摘Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for risk assessment and mitigation design.The smoothed particle hydrodynamics(SPH)method has been successfully applied to the simulation of two-dimensional(2D)and three-dimensional(3D)flow-like landslides.However,the influence of boundary resistance on the whole process of landslide failure is rarely discussed.In this study,a boundary condition considering friction is proposed and integrated into the SPH method,and its accuracy is verified.Moreover,the Navier-Stokes equation combined with the non-Newtonian fluid rheologymodel was utilized to solve the dynamic behavior of the flow-like landslide.To verify its performance,the Shuicheng landslide event,which occurred in Guizhou,China,was taken as a case study.In the 2D simulation,a sensitivity analysis was conducted,and the results showed that the shearing strength parameters have more influence on the computation accuracy than the coefficient of viscosity.Afterwards,the dynamic characteristics of the landslide,such as the velocity and the impact area,were analyzed in the 3D simulation.The simulation results are in good agreement with the field investigations.The simulation results demonstrate that the SPH method performs well in reproducing the landslide process,and facilitates the analysis of landslide characteristics as well as the affected areas,which provides a scientific basis for conducting the risk assessment and disaster mitigation design.
基金funded by National Key Research and Development Program of China(Grant No.2017YFC1501005)the National Key R&D Program of China(Grant No.2018YFC1504704)+3 种基金the National Natural Science Foundation of China(Grant No.42007232)the Key Research and Development Program of Gansu Province(Grant No.20YF8FA074)the Science and Technology Major Project of Gansu Province(Grant No.19ZD2FA002)the Construction Project of Gansu Technological Innovation Center(Grant No.18JR2JA006)。
文摘Numerous large-scale fragmented bedrock landslides developed along major fault system is a world-wide phenomenon,which are often characterized with repeated reactivation throughout histories.Due to the large-scale and deep-seated features,it is normally difficult to control such landslides,which in turn pose great threat to local residents and infrastructures.Therefore,monitoring and forecasting these gigantic landslides has become a key protocol for risk reduction.This paper introduces such a typical massive landslide,named Yahuokou landslide,besides Min River in Zhouqu County,Gansu Province,China.Reactivated on July 16,2019 with a volume of approximately 4×106 m3,moving slowly and transitionally starting from top part,its toe had partially blocked the Min River and destroyed roads and houses eventually by August 11,2019.As to emergency response for such huge slowmoving landslide,there is no standard national protocols.Therefore,how to make effective emergency decision has become a challenge.Based on previous experiences,integrated multi-methods,including UAV imagery interpretation,we applied GNSS monitoring and field investigations in the early stages of landsliding,in order to assist the decisionmaking.The results show that the movement path of the current displacement is consistent with that of the 1989 reactivation event,and the slide body was separated into three relatively independent blocks with different sliding velocities and responses to rainfall.The upper and lower blocks appeared less affected by rainfall,while the middle block responded more to the changes in precipitations.It proves that the combined approaches using a variety of monitoring techniques can play an effective role in the monitoring of rapidly deformed transitional largescale landslides,and can also provide a set of reference methods for the emergency disposal of similar landslide hazards.
基金funding from the National Natural Science Foundation of China(42207228,51879036,51579032)the Liaoning Revitalization Talents Program(XLYC2002036)the Sichuan Science and Technology Program(2022NSFSC1060)。
文摘The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a landslide dam.To address this gap,we conducted a study using the smoothed particle hydrodynamics numerical method to investigate the evolution of landslide dams.Our study included 17 numerical simulations to examine the effects of several factors on the geometry of landslide dams,including valley inclination,sliding angle,landslide velocity,and landslide mass repose angle.Based on this,three rapid prediction models were established for calculating the maximum height,the minimum height,and the maximum width of a landslide dam.The results show that the downstream width of a landslide dam remarkably increases with the valley inclination.The position of the maximum dam height along the valley direction is independent of external factors and is always located in the middle of the landslide width area.In contrast,that position of the maximum dam height across the valley direction is significantly influenced by the sliding angle and landslide velocity.To validate our models,we applied them to three typical landslide dams and found that the calculated values of the landslide dam geometry were in good agreement with the actual values.The findings of the current study provide a better understanding of the evolution and geometry of landslide dams,giving crucial guidance for the prediction and early warning of landslide dam disasters.
基金supported by the China Geological Survey Project(Grant No.DD20211314)the Fundamental Research Funds for Chinese Academy of Geological Science(No.JKY202122).
文摘A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.